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a  b  s  t  r  a  c  t

With  modern  industrial  processes  becoming  larger  and  more  complex,  we  should  consider  their  nonlinear
and  multimode  characteristics  carefully  for  accurate  process  monitoring  and fault  detection.  In  this  paper,
a novel  hybrid  of  two  data-driven  techniques—auto-associative  kernel  regression  (AAKR)  and  dynamic
independent  component  analysis  (DICA)—is  proposed  for fault  detection  of nonlinear  multimode  pro-
cesses.  AAKR  is  a  nonparametric  multivariate  technique;  it can  effectively  deal  with  nonlinearity  and
multimodality  of target  systems  by real-time  local  modeling  in accordance  with  query  vectors.  Resid-
uals  obtained  from  AAKR  usually  deviate  from  Gaussian  distribution  (i.e., they  are  non-Gaussian),  and
there exist  auto-  and  cross-correlations  between  them.  The  proposed  method  detects  process  faults  by
applying  DICA  to the  residuals;  DICA  can  capture  useful  statistical  information  hidden  in  the  residuals.
The  validity  and  effectiveness  of the proposed  method  are  illustrated  through  three  popular  benchmark
problems  such  as  a three-variable  multimodal  process,  a three-variable  nonlinear  process,  and  Tennessee
Eastman  process;  the  proposed  method  is  also  compared  with  several  comparison  methods  The  experi-
mental  results  demonstrate  the superiority  of the proposed  method,  which  achieves  the best  detection
rates  with  reasonable  false  alarm  rates.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Modern industrial processes, such as power plants and manu-
facturing and chemical processes, have become increasingly larger
and more complex; they operate with a large number of process
variables. Recent advancements in measurement and communi-
cations technologies and implementation of distributed control
systems significantly improve the quality and quantity of observed
sensor data; they also enable us to consistently collect and man-
age the large volumes of operational data. As a consequence, these
developments spark great interest in data-based techniques to
minimize plant downtime and optimize process operations by ana-
lyzing the massive amounts of collected data.
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Accurate and timely detection and diagnosis of possible faults
enhance the availability, safety, and reliability of target systems and
permit cost-effective operations. The faults mentioned previously
are defined as unpermitted deviations of at least one characteristic
property or variable of the target systems [1]. In the early stages
of a fault, the effects on system performance may be negligible.
However, if faults are left unattended without proper corrective
actions, they may  lead to severe performance degradation and can
eventually cause system failures. Properly designed fault detec-
tion systems can provide the exact process operating conditions
to operators and maintenance personnel, and can help them take
appropriate remedial actions to remove potential abnormal behav-
iors occurring in target processes; they allow planned operations to
be carried out successfully, and increase the productivity of process
operations.

Principal component analysis (PCA) and independent com-
ponent analysis (ICA) [6,7] are the most popular multivariate
statistical techniques; they have been widely employed in the fields
of process monitoring and fault detection [2–5]. Detecting possible
process faults through traditional PCA and ICA, we  only examine
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static properties, but cannot catch dynamic behaviors of target sys-
tems. To overcome this limitation, dynamic PCA and ICA (DPCA and
DICA) [8–10] were proposed. DPCA and DICA can capture not only
the cross-correlations but also auto-correlations on each measured
variable between its present value and those of the past; thus, they
may  be effective approaches to dynamic process monitoring.

The methods mentioned so far (i.e., PCA, ICA, DPCA, and DICA)
are unsuitable for nonlinear process monitoring because they
explicitly assume linearity between process variables. Kernel PCA
and ICA (KPCA and KICA) [11–14], combining kernels with tra-
ditional PCA and ICA, have been successfully used to handle the
nonlinearity of process data. Compared with previously suggested
methods [15–17], in KPCA and KICA, the number of variables in
reduced latent space does not need to be fixed in advance, and
nonlinear optimization procedures are also not needed. However,
the bigger the number of samples used for training, the longer the
training time takes. In addition, it is difficult to determine proper
kernel functions and their parameters, and to carry out contribu-
tion analysis to investigate root sources and/or causes of detected
abnormal events.

In addition to the nonlinearity between monitored variables
mentioned above, properly addressing multimodality of target
systems is another important issue. Several methods have been
proposed to monitor the condition of multimode processes, such as
Gaussian mixture models (GMMs), hidden Markov models (HMMs),
PCA mixture model, and adjoined ICA-PCA model [18–21,32,33].
Although these methods can tackle the multimodality of target
processes successfully, model parameters obtained by expectation-
maximization algorithm may  often be trapped in a local optimum
depending on initial starting points, and the number of modes (i.e.,
the number of clusters) should be predefined before searching for
the parameters.

In this paper, a novel hybrid of auto-associative kernel regres-
sion (AAKR) [22–24] and DICA is proposed for fault detection of
nonlinear and multiple-mode processes. AAKR belonging to lazy
learning is a nonparametric multivariate technique to predict new
query vectors by updating local models online; it does not need
to be concerned about target data properties (i.e., linear or non-
linear; unimodal or multimodal) beforehand. In standard AAKR,
after obtaining predicted vectors, residual vectors (i.e., error vec-
tors) and squared prediction error (SPE) used as a detection index
are calculated for fault detection.

Components of the residual vectors generated by AAKR, in gen-
eral, may  not follow Gaussian distribution accurately. Furthermore,
there may  exist cross-correlations between the residuals, and serial
correlations in each residual component. The proposed method
employs DICA to analyze the residual components obtained by
AAKR; DICA can efficiently handle both the non-Gaussianity of the
residuals and statistical relationships between them. From the hid-
den variables extracted from the residuals by DICA, we  calculate
three detection indices, such as I2

d
,I2e , and SPE statistics (also used in

[4,10]), and then perform fault detection; kernel density estimation
(KDE) is used to determine their upper threshold values.

The proposed method is based on the following key assump-
tions. First, we assume that monitored variables of multivariate
data collected from target processes may  have nonlinear relation-
ships, and may  follow not unimodal but multimodal distributions;
if conventional PCA and ICA are directly applied to the process
data, their performance may  be degraded. Nonparametric AAKR
can generate residual vectors where the nonlinearity and multi-
modality are properly removed; therefore, it is expected that the
proposed method can improve fault detection performance. Sec-
ond, it is assumed that the generated residuals may  be correlated to
each other, and there may  exist serial correlations in each residual
component; SPE statistic (see Eq. (5)) cannot consider the statistical
properties hidden in the residuals. Third, the residuals are assumed

to follow non-Gaussian distributions. Residual analysis via DICA can
deal with these statistical properties, and enhance the performance
of fault detection.

To verify the performance, the proposed and comparison
methods are applied to three popular benchmark problems: a
three-variable multimodal process, a three-variable nonlinear pro-
cess, and Tennessee Eastman (TE) process. Experimental results
show that the proposed method tackles the nonlinearity and
multimodality of target data successfully, and achieves better
fault detection rates (FDRs) than comparison methods; it is also
confirmed that the performance of the proposed method is con-
siderably enhanced by DICA that can handle non-Gaussianity plus
auto- and cross-correlations of the residuals.

The remainder of this paper is organized as follows. Section 2
explains standard AAKR and fault detection based on it. Section
3 describes ICA and DICA for analyzing residual components gen-
erated by AAKR. Section 4 briefly outlines the proposed method (a
novel hybrid of AAKR and DICA). Section 5 presents the experimen-
tal results and discussion, and finally, we  give our conclusions and
suggest future works in Section 6.

2. AAKR-based fault detection

In this section, AAKR-based fault detection is explained in detail;
the followings are described with reference to the contents of Refs.
[22,25].

2.1. Auto-associative kernel regression

From now on, scalars and vectors are written in italics and bold
lowercase, respectively, and matrices are written in bold capitals.
Let X = [x1,. . .,  xn]T ∈ �n×mbe a training data matrix composed of
n data vectors xi, i = 1,. . .,  n, collected from a target system where
each data vector consists of m observed process variables, i.e., xi ∈
�m. The data vectors that constitute the matrix should encompass
the whole operational range of normal target system behaviors.
There are various distance functions to measure the similarities
between the data vectors and the current query vector, such as
Euclidean, Manhattan, Chebychev, and Mahalanobis. In this study,
among the widely used distance functions, we employ Euclidean
or Mahalanobis distance functions, defined as

diE(xi, xnew) =
√

(xi − xnew)T (xi − xnew) , i = 1, ..., n (1)

diM(xi, xnew) =
√

(xi − xnew)TS−1
x (xi − xnew) , i = 1, ..., n (2)

where xnew is a new query vector, xi is the ith training vector stored
in memory, and Sx = 1

n−1X
TXis a covariance matrix calculated

from the data matrix X. Depending on the similarities measured
by the distance functions, weights for each training data vector
are generated by a weighting function. In this paper, among sev-
eral commonly used weighting functions (e.g., Gaussian, triangular,
exponential, quadratic, and tricube), Gaussian weighting function
is used to assign the weights as follows:

Kh(di) = 1√
2�h

exp

[
− (di)

2

2h2

]
, i = 1, ... , n (3)

where h is a bandwidth parameter in the weighting function, and di

is the distance function value between the ith training data vector
and a new query vector. The shape of Eq. (3) is identical to those of
probability density function for GMMs  [18] and covariance function
in Gaussian process [37]; different from them, Gaussian weighting
function in AAKR assigns weights to memory vectors according to
their similarities with query vectors.



Download English Version:

https://daneshyari.com/en/article/7104133

Download Persian Version:

https://daneshyari.com/article/7104133

Daneshyari.com

https://daneshyari.com/en/article/7104133
https://daneshyari.com/article/7104133
https://daneshyari.com

