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a  b  s  t  r  a  c  t

One  of  the  major  drawbacks  of traditional  Real-time  Optimization  (RTO)  is  the  steady-state  wait  before
estimating  the  parameters.  This paper proposes  an  alternative  solution  called  Real-time  Optimization
with  Persistent  Adaptation  (ROPA),  which  integrates  on-line  parameter  estimation  in  the  optimization
cycle,  avoiding  the  SS detection  step.  Essentially,  the  idea  is  to use  transient  information  to  update  the
steady-state  economic  optimization  problem  and, then,  by continuously  solving  it, the  calculated  opti-
mal  solution  would  reach  the  actual  plant  steady-state  optimum  in  a given  time  horizon.  ROPA  provides
an  intermediary  solution  between  static  and  dynamic  optimization  schemes.  While  it approximates  the
optimal  trajectory,  ROPA  design  enables  the  application  of  techniques  to plant-wide  optimization  and  the
use of well-established  static  RTO commercial  solutions.  The  new  methodology  benefits  are  illustrated
with  a case  study,  in  which  the  traditional  RTO  and ROPA  schemes  are  applied  to  the  Williams–Otto  reac-
tor.  Their  performance  is  compared  based  on profit  loss  and  deviation  from  the  actual  optimal  decisions.
The  results  show  that  the refinement  of the  prediction  capacity  by decreasing  the time  between  two
sequential  optimization  leads  to a better  economic  performance  and  enhances  the  disturbance  detection
of  the  optimization  cycle.

©  2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Optimization of chemical processes has drawn attention of
the academic and industrial communities due to the difficulties
in achieving profitable operating conditions, while meeting con-
straints imposed by the equipment, product specifications, and
safety/environmental regulations [1,2].

Usually in the standard Real-time Optimization (RTO) imple-
mentation, Model Parameter Adaptation (MPA), nonlinear rigorous
steady state models are optimized online in order to determine best
operating condition for the plant (e.g. maximizing profit, minimiz-
ing cost) [3]. In order to operate at the current optimal condition,
not in a nominal one, these models are updated with plant mea-
surement information every time the plant reaches steady-state
condition [4].

In practice, detecting the stationary condition is a difficult task
to be carried out [5]. Generally, steady-state (SS) detection meth-
ods rely on statistical or heuristic tests and, even after meeting the
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methods’ criteria, it is hard to determine if the process has actu-
ally reached steady-state [4]. The SS detection problem gets even
more complex if the size of the process increases. In these cases,
choosing a set of measurements that represents the plant state is
not trivial. Moreover, the measurement set can contain signals with
slower responses, which may  not be in phase with other measure-
ments, misleading the steady-state detection [4,5]. Additionally,
if the disturbance frequency is higher than the process time con-
stants and/or disturbances are constantly affecting a small section
of the process, the global set of measurements is unlikely to pass a
steady-state acceptance test.

As the steady-state periods are very difficult to detect, there is a
risk that the model is updated with erroneous information (i.e. the
stationary model parameters are directly updated with transient
data). Under these conditions, the calculated optimal does not cor-
respond to the actual plant optimum, even in cases with a perfect
plant model. By optimizing an unsuited model, the RTO obtains
aggressive and profitless updates of the setpoints, decreasing the
potential benefits of the economic optimization [6].

Hence, avoiding the steady-state detection step in the optimiza-
tion scheme is a significant advantage. This paper proposes an
alternative RTO methodology called Real-time Optimization with
Persistent Adaptation (ROPA) that avoids the steady-state wait
problem. ROPA continually adjusts the optimal set-point values by
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updating the stationary model of the static optimization layer in
real time with on-line parameter estimation methods.

Basically, the parameters are estimated with transient mea-
surements, but they are treated as if they represent a steady-state
condition. Thus, the methodology does not seek continuous opti-
mization, in a strict sense, rather it seeks to continuously improve
the set-points in a manner that in a broader time horizon, the set-
points reach the steady-state optimum. Fig. 1 compares ROPA with
the classical RTO approach, MPA.

Clearly, ROPA appears as an intermediary solution between
static RTO and optimization schemes that calculate optimal tra-
jectories, like Dynamic Real Time Optimization (DRTO) [7] and
Economic Model Predictive Control (EMPC) [8–10]. Despite appeal-
ing, there are few examples of DRTO and EMPC implementations
using large-scale rigorous first-principles models [11–13]. The lack
of large-scale models is a problem in cases involving complex pro-
cesses composed by several units, like a refinery. In these cases,
optimizing a single unit or subsystem does not guarantee that
the plant global optimum is reached [4]. In addition, estimating
states/parameter for dynamic models that encompass the whole
unit is a challenging task.

ROPA is the key for decoupling the estimation problem in
order to achieve plant-wide optimization. On one hand, ROPA
takes advantage of the well-established literature and software
of stationary economic optimization (like ROMeo 5.1 (Schneider
Electric, Houston, TX), and Aspenplus 7.1 (Aspentech,Burlington,
MA)  [3]). On the other hand, ROPA asynchronously updates the
plant-wide model by applying online estimation to subsections of
the plant model that have low parameter update frequency (e.g.
highly perturbed sections). Consequently, the steady-state plant-
wide optimization problem can be solved at any desired rate.

This paper is the first step towards developing this decou-
pled optimization scheme. Specifically, the aim of this paper is
to understand the benefits and shortcomings of applying online
estimation in a static economic optimization context. As shown in
the case study, the analysis of the closed-loop behavior of ROPA is
very encouraging. It indicates that ROPA has potential to improve
the overall economic result when compared to the classical RTO
scheme by reducing the RTO frequency and avoiding the SS wait.
Thus, ROPA offers an interesting alternative for optimizing chemi-
cal processes in real-time.

The paper is organized as follows. First some preliminary infor-
mation about notation and the models is given. In Section 3, the
formulation of the optimization problem along with the RTO (MPA)
layer is presented. Then, in Section 4, the online estimation methods
are reviewed, the implemented estimator (extended Kalman filter
(EKF)) is briefly described, and the ROPA methodology convergence
properties assessed. Section 6 presents details of the case-study
simulation. Next, the comparison of ROPA with MPA  is shown in
Section 7. Finally, Section 8 concludes the paper.

2. Preliminaries

The plant is represented by the following steady-state
input–output mapping:

yp,k(uk, dp,k, �p.k) ∈ R
ny (1)

in which uk ∈ R
nu are the system inputs, dp,k ∈ R

nd are the deter-
ministic disturbances, and �p,k ∈ R

nn the random disturbances. The
subscript k indicates the variable at time tk assuming a zero-order
holder over the interval [tk, tk+1).

Steady-state and dynamic models are developed for the RTO and
online estimation layers. They are associated with the subscripts ss
and dyn, respectively. The steady state model is:

0 = fss(x, u, p)

y = h(x, p)
(2)

where, in addition to the previous notation, x ∈ R
nx are the model

state variables and p ∈ R
np is the set of model parameters. fss :

R
nx × R

nu × R
np → R

nx is a nonlinear function. The lack of time
subscripts indicates steady-state values. The dynamic model is rep-
resented by:

xk+1 = fdyn(xk, uk, pk) + ωk

yk = h(xk, pk) + �k
(3)

In the dynamic case, process and measurement noise, ωk and
�k, are added to the process model. Both are modeled as white
Gaussian random noises with zero mean and constant covariance
matrices Q ∈ R

nx,nx and R ∈ R
ny,ny , respectively. Also, the state

transition function fdyn(xk, uk, pk) is a mapping over the interval
[tk, tk+1), which represents the solution of the differential model
during the period. fdyn is assumed to be at least once differentiable
in all points of the valid operation range. Moreover, fdyn has the
same dimensions as fss and both share the same states.

3. Model parameter adaptation (MPA)

MPA, which is the standard RTO approach [3], is implemented
in order to be used as a comparison basis to ROPA. Although the
MPA  cycle can have more elements [3], like gross error detection,
only the three steps shown in Fig. 1 were implemented in the case
study, namely: steady-state detection; model adaptation (param-
eter estimation); and steady-state optimization.

3.1. Steady-state detection

The steady state detection method is based on [14], which esti-
mates the variance of the data by two methods. The first method
calculates an estimate of the variance between the current mea-
surement and a filtered trend of the same measurement. In turn,
the second method calculates the variance between sequential data
measurements. Whenever the process reaches a steady state, the
variances calculated by both methods will ideally be equal to each
other. Therefore, if the process is not at steady state, the variance
ratio is significantly larger than unity. The equations of the SS detec-
tion method are:

zf,k = �1zk + (1 − �1)zk−1

ı2
1,f,k = �2(zk − zf,k−1)2 + (1 − �2)ı2

1,f,k−1

ı2
2,f,k = �3(zk − zk−1)2 + (1 − �3)ı2

2,f,k−1

R = (2 − ı1)ı2
1,f,k/ı

2
2,f,k

(4)

in which, z is the given measured variable (z ∈ yp,k); zf is its filtered
value; ı2

1,f,k is the variance calculated by the first method, and ı2
2,f,k

by the second; �i are the filter factors; and R is the ratio of variances.
If R is larger than a given threshold (Rcrit), the measurement fails

the SS detection test. In the case where two or more measurements
are used to indicate the SS, all of them need to pass the test in order
to consider the process at steady-state.

3.2. Model adaptation

Once the plant has reached steady state, the model adaptation
algorithm starts to run. The parameters are estimated by minimiz-
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