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a  b  s  t  r  a  c  t

With  the  increasing  availability  of spectral,  vibrational,  thermal  and  other  sensors,  the  challenge  of  “Big
Data”  in  chemical  processing  industry  is  not  only  to analyze  the  data  offline,  but  also  to  make  use  of  the
data online  to improve  process  operation.  To this  end,  accurate  and  reliable  measurements  or  estima-
tions  of product  quality  are  critical  in today’s  demanding  manufacturing  environments.  Data-driven  soft
sensors  based  on  Projection  to Latent  Structure  (PLS)  methods  are  often  used  to  model  key  quality  vari-
ables using  measureable  inputs.  However,  most  processes  do  not operate  around  a  true  steady  state  due
to changes  in  equipment,  feedstock,  sensor  and  operating  strategy.  Therefore,  soft  sensor  models  need
to  be  updated  periodically.  Current  model  maintenance  approaches  such  as  moving window  update,
recursive  update  in industry  center  around  rebuilding  the model  using  more  recent  process  data.  This
approach  is not  robust  enough  in  scenarios  where  process  data  is  contaminated  with  outliers,  downtime
and other  non-steady  state  transients.  In this  study,  an  alternative  model  update  approach  is developed.
First,  we  adapted  two key performance  indicators  (KPIs)  for assessing  the performance  of  the  current
soft  sensor  model.  The  Hotelling’s  T2 based  KPI  is a predictive  KPI  that  monitors  for  model  extrapolations
against  future  process  data;  the prediction  residual  based  KPI then  detects  long  term  prediction  degra-
dation  trends  using  a  filtered  prediction  error.  Second,  we developed  an  update  strategy  using the  robust
mean  and  variance  estimators  of the  inputs  and  outputs.  Through  case  studies  using  industrial  process
data,  this  update  method  was  demonstrated  to be  effective  in  improving  prediction  performance  without
rebuilding  the  PLS  model  from  scratch.  Lastly,  the  model  update  mechanism  can  be  combined  with  both
KPIs  indicators.  Through  simulation  of online  behavior  using  industrial  data,  we  showed  that  this  update
strategy  effectively  improved  the  prediction  performance  of  the  PLS  soft  sensor.  In cases  where  the  initial
model  was  suboptimal,  the  update  strategy  also  allowed  for  timely  identification  of  underlying  problems
and alerted  engineers  of  the need  to rebuild  the  model.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Accurate and reliable measurements and prediction of quality
variables ensure critical success in today’s demanding manufac-
turing environments. In the absence of an economical or effective
online measurement, inferential or soft sensors could serve as
an alternative solution [1–4]. Over 300 soft sensors are currently
deployed globally across Dow. These soft sensors infer important
quality variables such as concentration or impurity levels from
existing process variables such as temperature, pressure, and flow.
These quality variables are usually measured offline in a lab which
offers limited number of samples with significant time delay, mak-
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ing it difficult to make timely process adjustments. With the onset
of “Big Data” movement (larger storage, higher frequency data,
diverse sensors, and more computational power), larger and more
diverse datasets will be available for soft sensor development. How-
ever, as Reis et al. pointed out in [5], there remains various research
challenges that need to be addressed before the full potential of “Big
Data” can be utilized.

One of the challenges in soft sensors is that the life spans of most
data-driven soft sensors are limited. This is because most processes
do not operate around a true steady state. Changes in equipment,
feedstock, sensor and operating strategy are often on a much slower
time-scale than the available training data. In addition, outliers and
nonlinearity are also factors that affect soft sensors performance
and longevity, many works have been published in literature that
deal with these issues exclusively [6–8]; and thus these topics are
not discussed in this paper. In Kano and Fujiwara’s report of indus-
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trial survey results on soft sensor implementations [9], issues of
“Accuracy deterioration due to changes in process characteristics”
accounted for 29% of the problems in soft sensing. As a result, data-
driven soft sensors need to be updated periodically to maintain
their performance in the most efficient and least intrusive way pos-
sible. To this end, an important question that need to be answered
in the era of “Big Data” is whether using more data will lead to
better model performances [5].

One way to utilize all the available data for model update is
through recursion or moving window updates. These methods
have been popular in recent academic literatures [10–14]. In these
approaches, the regression methods are repeatedly applied when-
ever new data are obtained. While this adaptive update process
can be automated, challenges for industrial implementation exist.
For instance, the convergence and stability of these update algo-
rithms depends on the data being free of faults or outliers, which
is rarely the case in industrial systems. In addition, these adaptive
techniques usually only update the coefficients and do not consider
potential changes in the underlying causal variables. This limitation
creates a dilemma where we need to consider the trade-off between
simplicity of the model structure versus the robustness during
model adaptation. There is also difficulty in assessing the perfor-
mance of an adaptive model system in closed-loop configuration
[2]; in other words, how can we detect fundamental disagreements
between model and process data, so that we avoid delaying immi-
nent human intervention? Lastly, to apply these methods online
also requires modern algorithm execution platforms, which has
slowed their adoption industrywide. It is clear that we need to be
more selective about how to use the additional data. The update
scheme should be robust, simple and effective. The model main-
tenance should fail gracefully when the differences between the
trained model and process data are too big to reconcile.

Fujiwara and Kano has proposed a new paradigm through the
use of just-in-time modeling [1]. In their approach, the model main-
tenance step is bypassed since a new model is trained each time a
prediction is made. The trained model uses data that is most rel-
evant for that scenario. However, the use of a database to store
all the past training data inherently assumes that the past data is
representative of the future. This means that this approach is not
designed for processes with drifts or new operating conditions. In
this study, we attempt to address model maintenance of existing
PLS soft sensors in a robust and simple manner without the use of
closed-loop adaptive updates. The overall objectives of this study
are the following:

1. Determine a set of key performance indicators (KPI) to provide
guidelines on when should the model be updated vs. when the
model should be completely overhauled.

2. Develop a method for performing a quick update on soft sensor
models preserving the underlying correlation from the original
models.

3. Derive a set of update rules that combines the KPI andmodel
update mechanisms to form a unifying model maintenance
framework.

1.1. Preliminaries

PLS soft sensors rely on the partial least squares (PLS) regres-
sion, which belongs to a class of latent projection based regression
methods. Latent projection methods have a proven record of suc-
cess in various soft sensor applications [2–4,15–17]. Here we give
a very brief overview of PLS regression, readers can refer to [15];
for a more detailed explanation. The PLS methods decompose the
mean-centered matrices into the following form:

X = TPT + E

Y  = UQ T + F

where T ∈ Rn×A and U ∈ Rn×A are the X and Y scores respectively,
P ∈ Rm×A and Q ∈ Rp×A are the loadings for X and Y, respec-
tively. The number of components in the PLS model is typically
determined through cross-validation or through information crite-
rion such as the Akaike Information Criterion (AIC) [18]. The PLS
algorithm maximizes the covariance between the X-scores and
Y-scores; this property leads to PLS requiring fewer components
when compared to principal component regression models [18].

To apply the PLS latent structures in regression, given unfolded
input data matrix x0, the output predictions ŷ0can be calculated
linearly using ŷ0 = x0ˇPLS . The ˇPLS can be expressed as a function
of the latent variables as follows:

ˆ̌
PLS = R

(
TTY

)
= RRTXY

where R is the loading weight matrix following the notation in [19].
In addition to numerical stability and capability to handle high

dimensionality data, another key advantage of PLS/PCA are the
additional diagnostic indices (The Hotelling’s T2 and Squared Pre-
diction Error (SPE)) that can reveal additional information about
the process. The multivariate statistics Hotelling’s T2 and the SPE
can be calculated as follows:

T2 = tT0�
−1t0∼

A
(
n2 − 1

)
n (n − A)

FA,n−A

SPE = ‖x0 − t0p0‖2∼g�2
h

where t0 and p0 are the PLS decomposed scores and loadings for the
data batch being tested, and A is the number of components in the
PLS model. � is defined by � = 1

n−1T
TT . Given significance level �,

control limits for T2 and SPE can be calculated from the Fischer and
the �2 distributions respectively. The Hotelling’s T2 statistic detect
mean shifts from PLS/PCA score vectors as an indicator of process
operation normality. The SPE (sometimes also referred to as Dis-
tance to Model for the X inputs (DMODX)) estimates the magnitude
of model residual for incoming data, where a deviation would indi-
cate degrading model performance or abnormal incoming data. An
in-depth introduction of these diagnostic indices can be found in
[20].

Soft sensor degradation refers to the decrease in the prediction
performance of the soft sensor when compared against the nominal
performance when the soft sensor was  first developed. To account
for occasional unaccounted for process variations such as sensor
failures or upstream/downstream disturbance, the prediction per-
formance is monitored using aggregate statistics (indices) instead
of singular prediction errors. Most of the indices are based on pre-
diction error or variance explained, such as the root mean squared
prediction error (RMSPE), sum of squared residual (SSR), or coef-
ficient of determination (R2). In [17], the most popular indices in
evaluating prediction performance have been provided.

The underlying causes of performance degradation can be
grouped into three primary contributing factors [2] have been sum-
marized into three categories in Table 1.

Process fault refers to changes in the actual process condition
that causes a change in the input-output relationship from the time
of soft sensor model training. The duration of the process fault can
be long or short depending on the actual change that took place.
For example, a process upset could be a relatively short upset that
requires no change to the soft sensor model, while a catalyst change
or a plant turn-around would result in completely different oper-
ating characteristics that requires soft sensor model update.

The model fault refers to all numerical and statistical challenges
associated with developing the actual regression model used in
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