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a  b  s  t  r  a  c  t

We  present  a  scalable  design  of  an  experiments  framework  for sensor  placement  in systems  described  by
partial  differential  equations  (PDEs).  In  particular,  we  aim  to  compute  optimal  sensor  locations  by mini-
mizing  the  uncertainty  of  parameters  estimated  from  Bayesian  inverse  problems.  The  resulting  problem
is  a computationally  intractable  mixed-integer  nonlinear  program  constrained  by  PDEs. We  approach
this  problem  with  two heuristics  used  in  compressed  sensing  and  optimal  control  literature:  a sparsity-
inducing  approach  and  a sum-up  rounding  approach.  We  also  investigate  metrics  to guide  the  design  of
experiments  (the  total  flow  variance  and  the  A-optimal  design  criterion)  and  analyze  the  effect  of  differ-
ent noise  structures  (white  and  colored).  Using  an  application  in  natural  gas  pipelines,  we conclude  that
the  sum-up  rounding  approach  gives  the best  results  and  produces  shrinking  gaps  with  increasing  mesh
resolution.  We  also  observe  that convergence  for the  white  noise  measurement  error  case  is  slower  than
for the  colored  noise  case.  For  A-optimal  design,  the  solution  is  close  to  a uniform  distribution  of sensors
along  the  pipeline  while  for  the  flow  variance  design  the  distribution  is unstructured.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The sensor placement problem seeks to determine the opti-
mal  number, locations, and types of sensors that would maximize
information about a dynamical system. Because information can
often be expressed in terms of the posterior covariance matrix
of the states or parameters of the system, the problem can often
be cast as an optimal design of experiments problem. Such a
problem is computationally challenging, particularly in the infinite-
dimensional case, because one must solve a mixed-integer and
bilevel optimization problem constrained by differential algebraic
equations or by partial differential equations (PDEs). This problem
has been addressed by using mixed-integer programming tech-
niques for contaminant detection in water networks [3,2,22,10].
In these studies, an optimal set of sensor locations is selected from
a set of candidate locations to minimize a certain engineering met-
ric such as contaminant detection time, population exposure, or
likelihood of detection. Likelihoods are assigned based on contam-
ination scenarios, and not on information content of the sensor
data recorded, as in a traditional experimental design setting. As
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a result, these approaches fail to provide statistically meaning-
ful sensor network designs. Moreover, because the formulations
capture flow dynamics by using surrogate representations such as
transportation delays, they fail to capture physical effects.

Sensor placement problems have also been addressed in a more
general control setting where one seeks to optimize a measure
of observability such as the covariance matrix, Kalman estimator
gain, or the so-called observability Grammian matrix. This prob-
lem is again a bilevel optimization problem. The covariance matrix
approach in [6] bypasses this by assuming that the dynamic model
is linear, thus allowing the inner minimization problem to be for-
mulated as a linear matrix inequality. The approach in [20] models
the dynamics of the covariance matrix directly as a Riccati differen-
tial equation, which implicitly assumes linearity and thus enables
the use of semidefinite programming algorithms. This approach,
however, is focused on control policy design to extract maximum
information, and not on sensor placement design. Consequently,
the authors do not consider discrete decisions associated to place-
ment. A rigorous treatment of nonlinear dynamics is presented in
[19] by casting the problem as a mixed-integer nonlinear program.
The authors use a genetic algorithm to deal with the inner mini-
mization problem that computes the observability metric. A similar
approach is used in [14] to address the inner minimization prob-
lem. Mixed-integer techniques have also been used in the context
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of information maximization for Gaussian processes and for design-
ing Latin hypercube samples [11,8]. These approaches do not use
physical models.

Recently, the sensor placement problem for systems described
by PDEs has been cast as an A-experimental design problem in
which the number of sensors (i.e., the design cost) is controlled
by using an sparsity-inducing �0 regularization norm that is in
turn approximated by using a smoothing function [1]. This com-
pressed sensing approach was shown to be scalable and applicable
to infinite-dimensional systems, but it requires tuning and can be
numerically unstable. One can also formulate and solve the problem
as a mixed-integer programming problem directly, but this is com-
putationally intractable because the PDEs are in general nonconvex
and because the problem has a bilevel nature.

An important application of optimal sensor location techniques
is infrastructure networks (oil, water, gas, and electricity) in which
large amounts of sensor data need to be processed in real time in
order to reconstruct the state of the system or to identify leaks,
faults, or attacks. In this work we focus on natural gas networks,
which are used to transport fuel to power generation facilities and
urban areas from storage and processing facilities. These networks
comprise pipelines that span thousands of miles and exhibit com-
plex dynamics. An interesting property of natural gas networks is
that significant amounts of gas can be stored inside the pipelines.
The stored gas is distributed spatially along the pipelines and is
normally referred to as line-pack [5]. Line-pack is used by pipeline
operators to modulate variations of gas demands at multiple spa-
tial points in intraday operations. Some of the strongest variations
in gas demands are the result of on-demand startup and shut-
down of gas-fired power plants [15]. Modulating these variations is
challenging because the fast release of line-pack at multiple simul-
taneous locations can trigger complex spatiotemporal dynamic
responses that propagate hundreds to thousands of miles and that
can take hours to stabilize. Therefore, line-pack management is
performed by using sophisticated optimal control and pipeline sim-
ulation tools. To use these automation tools, one must reconstruct
spatiotemporal state fields (flows, pressures, temperatures) [16]
and detect natural gas leaks [4]. This task is challenging from a prac-
tical stand point given the limited amounts of sensor data (often
limited to pressure and flow signals at a finite set of locations), the
infinite-dimensional nature of pipeline systems, and the complex
physical behavior of these systems. Such challenges are not unique
to natural gas networks but also arise in other domains such as
geophysics and contaminant source detection in water networks.

In this work we present a scalable design of experiments frame-
work to compute optimal sensor locations for systems described
by PDEs. This is done by minimizing the uncertainty in the state
and of parameters estimated from Bayesian inverse problems. The
resulting problem is a mixed-integer infinite-dimensional optimal
control problem. We  approach this problem by using two efficient
heuristics that have the potential to be scalable for such problems:
a sparsity-inducing approach used in machine learning [1] and a
sum-up rounding approach used in optimal control [17]. We inves-
tigate two objectives: the total flow variance and the A-optimal
design criterion. Using a natural gas pipeline case study, we  con-
clude that the sum-up rounding approach produces shrinking gaps
with finer meshes. We also observe that convergence for the white
noise measurement error is slower than for the colored noise case.
For the A-optimal design the solution is close to the uniform dis-
tribution, but for the total flow variance the pattern is noticeably
different.

The paper is structured as follows. In Section 2 we define the
physical system model that we use for sensor placement. In Sec-
tion 3 we provide the formulations of the design of experiments
problems that we aim to solve. In Section 4 we present numeri-
cal experiments with machine learning and the sum-up rounding

procedure for solving the design of experiments problem. In Sec-
tion 5 we summarize our conclusions and briefly describe future
work.

2. Distributed system modeling

We  illustrate the complexity of the optimal sensor placement
problem by focusing on the physical equations describing the
dynamics of natural gas networks. Details on the model derivation,
nomenclature, and units used in this section can be found in [24].

2.1. Problem physics

The isothermal flow of gas through a horizontal pipeline is
described by the conservation and momentum equations:

∂�(�, x)
∂�

+ ∂(�(�, x)�(�, x))
∂x

= 0 (2.1a)

∂(�(�, x)�(�, x))
∂�

+ ∂p(�, x)
∂x

= − �

2D
�(�, x)�(�, x)|�(�, x)|. (2.1b)

Here, � ∈ T:=[0,  T] is the time dimension with final time T (plan-
ning horizon), and x ∈ X:=[0,  L] is the axial dimension with length
L. The pipeline diameters are denoted as D, and the friction coeffi-
cients are denoted as �. The states of the link are the gas density �(�,
x), the gas speed �(�, x), and the gas pressure p(�, x). The transversal
area A, volumetric flow q(�, x), and mass flow f(�, x) are given by

A = 1
4

�D2 (2.2a)

q(�, x) = �(�, x) A (2.2b)

f (�, x) = �(�, x) �(�, x) A. (2.2c)

For an ideal gas, pressure and density are related as follows:

p(�, x)
�(�, x)

= c2. (2.3)

Here, c is the gas speed of sound. The speed (assuming an ideal gas
behavior) and the friction factor � can be computed from

c2 = 	̄ZRT

M
(2.4a)
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))−2
, (2.4b)

where Z is the gas compressibility factor, R is the universal gas con-
stant, T is the gas temperature, M is the gas molar mass, 
 is the
pipe rugosity, and 	̄ is the adiabatic constant. Often one desires to
transform (2.1) into a more convenient form in terms of mass flow
and pressure by using (2.3) and (2.2):
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Substituting (2.3) and (2.2a) in (2.5b) and performing some manip-
ulations, we  obtain the more compact form:
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For numerical purposes, we define scaled flows f(�, x) ← ˛ff(�, x) and
pressures p(�, x) ← ˛pp(�, x), where ˛f and ˛p are scaling factors.
Scaling (2.6) and rearranging, we  obtain the final form:

∂p(�, x)
∂�

= −c1
∂f (�, x)

∂x
,  � ∈ T,  x ∈ X  (2.7a)
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