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a  b  s  t  r  a  c  t

Data-driven  soft  sensors  have  seen  tremendous  development  and  adoption  in  both  academia  and  indus-
try.  However,  one  of  the  challenges  remaining  is  modeling  process  drifts,  degradation  and  discontinuities
in  steady-state.  Since  processes  are  never  truly  operating  at a  steady-state,  it is often  difficult  to assess
how  much  and  what  types  of  process  data  are  needed  for  training  and  model  maintenance  in  the  future.
A  purely  adaptive  model  maintenance  strategy  struggles  against  discontinuities  such as  preventive
maintenance  or catalyst  changes.  In  mixture  modeling  and  multi-model  systems,  the  overall  model-
ing  structure  is fixed  and  only  local  coefficients  are  adapted.  In  addition,  multiple  model  systems  require
large  amount  of training  data  to initialize.  In this  paper,  we  propose  an  adaptive  multiple  model  system
utilizing  growing  self  organizing  map  to model  processes  with  drifts and  discontinuities.  Simple  model
update  mechanisms  such  as  recursive  model  update  or moving  window  model  update  is not  sufficient
to  deal  with  discontinuities  such  as abrupt  process  changes  or  grade  transitions.  For  these  scenarios,  our
approach  combines  projection  based  local  models  (Partial  Least  Squares)  with  growing  self-organizing
maps  to  allow  for flexible  adjustments  to  model  complexity  during  training,  and  also  later  in  online
adaptation.  This  flexible  framework  can  also  be  used  to explore  new  datasets  and rapidly  develop  model
prototypes.  We  demonstrate  the  effectiveness  of our  proposed  method  through  a  simulated  test  cases
and  an  industrial  case  study  in  predicting  etch  rate of  a plasma  etch  reactor.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Industrial manufacturing systems are becoming increasingly
complex and sophisticated due to more stringent requirements
on efficiency, product quality and asset utilization. The additional
system complexity is possible due to advancements in control,
real-time optimization and continuous process improvement. As
a result of these complex integrated systems, it becomes increas-
ingly challenging to deal with monitoring and prediction of key
quality parameters. Considerable work have gone into improving
modern soft sensors performance by increasing their robustness
against missing data or poor data [1–3], improved handling of sys-
tem dynamics [4], and improved model updating [5,6]. Yet, many
of these systems operate in multiple production modes which can
be characterized by throughput, load, level, recipe and product
grades [7]. Traditional methods such as static soft sensor models

∗ Corresponding author.
E-mail address: bo.lu@utexas.edu (B. Lu).

are ill-suited for these complex systems. Multivariate data-driven
models using Principal Component Analysis (PCA) and Partial Least
Squares (PLS) also face challenges due to inherent nonlinearity, pro-
cess drifts, multiple operating modes and complex fault signatures
[8].

Since the data generated from these systems naturally have
multi-modal distributions [9], a “divide and conquer” approach is
commonly taken to partition the data into sub-regions that can
be approximated using simple local models. After satisfactory per-
formance is achieved at the local level, selection of the current
operating mode at a supervisory layer can then be used to smooth
local model results for better prediction of the overall system.
Liu proposed a method to detect changes in operating mode to
select the best predictor in a multi-modal soft sensor application
in [10]. Dunia and Edgar formulated a multi-state PLS framework
where transitions between states are smoothed using a k-means
clustering smoothing mechanism [11]. Kadlec et al. proposed an
incremental learning adaptive soft sensor system that generates
operating modes based on prediction residual performance and
combines the local model predictions using a Bayesian-inference
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based validity function approach [12]. There are also many other
published works in this area [13–16]. Common challenges associ-
ated with these approaches are:

1. Partitioning of the operating space needs to be determined
before local model training [12,11].

2. Operating modes that have limited training data can lead to
numerical instability [12,16].

3. Local model and supervisory structural layer are often trained
separately [11].

4. It is often difficult to implement these complex models online in
an industrial environment.

On the other hand, mixture models and kernel density estimates
based methods directly assumes that the underlying data distribu-
tion is non-Gaussian and multi-modal without any easily identifiable
class labels. In these methods, mixture models do not require apriori
definition of a multi-model structure. Yu and Qin [9] proposed using
finite Gaussian Mixtures to monitor industrial process data. They
obtained results superior to conventional multivariate monitor-
ing schemes on the Tennessee–Eastman plant simulation. Thissen
et al. applied finite Gaussian mixture models to industrial data of a
fiber spinning process and found much higher sensitivity to faults
using Gaussian Mixture Models [17]. Sammaknejad et al. modeled
the transition among operating states as a Hidden Markov pro-
cess where the transition probabilities are adapted online. Their
approach was applied in monitoring an oil sand froth treatment
process [18]. Some of the other works using mixtures of distribu-
tions are [19–22]. Through reviewing these works, we  can observe
that this class of methods face the following challenges:

1. difficult to troubleshoot due to the lack of transparency
2. difficult to implement online due to heavier computational

requirements
3. stability of online adaptation of these Gaussian mixtures has not

been thoroughly studied.

Batch process data from semiconductor manufacturing are par-
ticularly challenging to model due to the following characteristics:

• high-mix manufacturing, upstream and downstream processes
could change depending on product and production thread.
Therefore, unmeasured disturbances could affect process mod-
eling results.

• large number of measurements, high dimensional data result-
ing from unfolding of batch trajectories

• threaded production, multiple recipes are ran on the same tool.
As a result, some un-popular recipes might have little data avail-
able for model building.

• nonlinearity, input–output relationships are not linear
• process degradation, input–output relationships drift overtime

To improve upon existing works, our proposed new approach
attempt to satisfy the following:

• Does not rely on class label information
• Does not require large amount of training data to initialize
• Can be easily extended for online adaptation
• Produces interpretable local models and diagnostics for trou-

bleshooting

To this end, the work of growing structure multiple model sys-
tems proposed by Liu et al. [14] and Bleakie et al. [23] inspired
the development of a hybrid multiple model system that combines
PLS local models with a Growing self-organizing Map  to form an

Fig. 1. Example of SOM vs GSOM under different tuning parameters, figure taken
from [25].

integrated framework suitable for batch data from semiconductor
manufacturing.

2. Growing self-organizing map

Growing self-organizing map  (GSOM) is a subclass of self-
organizing maps (SOM), which is a type of unsupervised machine
learning technique. SOM is also a special case of an artificial neural
network. Its primary purpose is to map  high dimensional data onto
a lower-dimensional space. It is also called a Kohonen map  [24].
Different from clustering algorithms and other artificial neural net-
works, SOMs attempt to preserve the topology of the input space
by modeling the connections between clusters. As a result, these
topological information can be used to improve prediction, train-
ing, and model update. GSOM makes no prior assumption about
the size of the map  and allows the algorithm to learn the model
parameters at run-time. An example of the topology in a GSOM is
given in Fig. 1, where GSOM is able to preserve the spiral geometry
in the reduced dimensional space.

Just like other artificial neural networks; GSOM requires train-
ing before it becomes useful. The classic GSOM undergoes three
stages of training:initializationwhere small number of nodes and
the topological structure parameters are initialized.growingwhere
training input is presented to GSOM to successively minimize the
vector quantization error of the input data. Existing nodes will be
relocated to new positions, and new nodes will be added as the
algorithm sees fit.fine-tuningfinal adjustment of node positions
according to training data.

In the proposed approach, since the structural learning phase
(training the GSOM) is integrated with the local learning phase
(training local PLS models), both training phases will be discussed
together. First, the basic mathematical description of GSOM is intro-
duced.

Given input and output data X(N × P) and y(N × 1), we can define
a feature vector for each observation

si = [s1 s2 s3 s4. . .sK ]i = [P(xi, xi−1, . . .), Q (yi, yi−1, . . .)] (1)

where P(·) and Q(·) are features selection functions. These functions
can either reduce feature space dimension by projecting X onto a
lower dimensional space using techniques such as Principal Com-
ponent Analysis (PCA) or Independent Component Analysis (ICA),
expand feature space by introducing nonlinear terms or lagged
variables. Determining the appropriate feature selection function
will depend on the dataset being modeled and also the prior knowl-
edge of the process.

Once the feature vectors are defined, SOM  is then trained on
the features. A trained SOM has the location of its nodes and the
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