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a  b  s  t  r  a  c  t

Traditional  multivariate  statistical  process  monitoring  techniques  usually  assume  measurements  follow
a multivariate  Gaussian  distribution  so  that T2 can be  used  for  monitoring.  The  assumption  usually  does
not hold  in  practice.  Many  efforts  have been  spent  on redefining  a  proper  boundary  of control  region  for
non-Gaussian  distributed  processes.  These  efforts  lead  to  new  models  such  as  independent  component
analysis  (ICA),  statistical  pattern  analysis  (SPA),  and  new  techniques  such  as  kernel  density  estimation
(KDE),  support  vector  data  description  (SVDD).  However,  it has  not  been  stated  clearly  how  a  latent
structure  will affect monitoring  performance.  In this  paper,  most  of  main  stream  methods  for  non-
Gaussian  process  monitoring  are recalled  and  categorized.  The  essential  problem  formulation  of process
monitoring  is  summarized  from  a  general  case  and  then  explained  in both  Gaussian  and  non-Gaussian
distribution,  respectively.  According  to this  formulation,  KDE and  SVDD  methods  are  effective  but  time-
consuming  to  extract  proper  control  region  of non-Gaussian  distributed  processes.  Dimension  reduction
models  are  more  beneficial  to overcome  the curse  of dimensionality,  rather  than  extracting  non-Gaussian
data  structure.  Besides,  the  monitoring  of non-Gaussian  processes  can  be converted  into  the  monitoring
of  Gaussian  processes  according  to central  limitation  theorem.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Multivariate statistical process monitoring (MSPM) technology
has received a great success in fault detection and diagnosis for
many manufacturing processes, which relies on latent structure
models such as principal component analysis (PCA) and partial least
squares (PLS) [1–7]. MSPM can be viewed as the application of data
science to manufactural industries, which digs valuable informa-
tion from huge routine process data and improves the reliability
and efficiency greatly [8].

A typical MSPM data model usually starts with a dimension
reduction procedure, which provides a latent structure of data.
Taking PCA model as an example, principal subspace and residual
subspace are generated after a PCA model is built. Then, corre-
sponding statistics are available for process monitoring in each
subspace. If measured variables follow a multivariate normal dis-
tribution, the optimal control region in principal subspace is a
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hyper ellipsoid, while the control region in residual space is usu-
ally defined as a hyper sphere. However, it is very common that
some measured variables do not follow a Gaussian distribution. As
a result, PCA and PLS models do not function effectively and lead to
inaccurate detection result.

In order to deal with such challenges, many methods have been
well developed, which can be roughly divided into three types. The
first type is to modify conventional latent structure of multivariate
data. Independent component analysis (ICA) is typical modifica-
tion of PCA regarding non-Gaussian distribution, which searches a
linear combination of variables with the highest non-Gaussianity
[9]. While principal components in PCA are independent under
multivariate Gaussian distribution, components in ICA are claimed
to be independent under non-Gaussian distribution. Generally,
ICA model recovers essential signals efficiently for non-Gaussian
distributed data. After ICA was firstly introduced to process moni-
toring by Kano et al. [9], related research work has been reported
in many occasions [10,11].

Although independent components in ICA are more informative,
they usually do not follow a multivariate normal distribution. Con-
sequently, kernel density estimation (KDE) is adopted to determine
the boundary of few retained independent components. Kernel
density estimation is widely used to estimate the control region of
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latent variables in many models [12,13]. However, it is not the only
way. For the mixture of multiple Gaussian distributions, Gauss-
ian mixture model (GMM)  was proposed to describe the whole
distribution with fewer Gaussian distributions based on Bayesian
criterion [14]. As GMM  does not reduce the dimensionality of
measurements, a mixture of factor analysis model was proposed
for process monitoring inspired by GMM  [15]. Recently, another
technique called support vector data description (SVDD) has been
studied in process monitoring [16–19]. SVDD attributes the bound-
ary of normal data to a hyper sphere and learns sphere radius
directly from data in a similar way to support vector machine. With
the help of kernel function, the original data which may  not be dis-
tributed as a sphere can be mapped into a high-dimensional feature
space. The advantage of SVDD over KDE is high computational effi-
ciency. Similar to SVDD, Ge and song employed a one-class support
vector machine to determine control region with a hyper plane
instead of hyper sphere which is also learned directly with unsu-
pervised data [20].

Instead of searching the control region, there is another
type of solution, which generates features that approximately
follow Gaussian distribution from original measurements. The
local approach, which constructs statistics based on parameters of
latent structure, has been proposed to perform the monitoring of
industrial processes [21,22]. The parameters in their models are
eigenvalues of covariance matrix. Although original data may  not
follow Gaussian distribution, the featured statistics from a win-
dow of samples may  approximately follow a Gaussian distribution
according to central limit theorem (CLT). Similarly, a new frame-
work called statistic pattern analysis is proposed to perform fault
detection of both continuous and batch processes [23,24]. SPA
framework considers not only mean and covariance of samples, but
also high order statistics like skewness and kurtosis. Similar to local
approach, the feature vector of SPA approximately follow a multi-
variate Gaussian distribution. This approach works well regardless
of original distribution and is more sensitive to tiny faults because
noisy level falls down when statistics are used for monitoring
directly. However, it usually causes non-ignorable delay to fault
detection depending on window size.

Although there are so many models and methods to deal with
non-Gaussian data, there is a lack of summary that points out the
essential formulation in non-Gaussian process monitoring. This
paper firstly recalls main techniques used for the monitoring of
non-Gaussian distributed processes and then tries to understand
basic problems in process monitoring. The function of latent struc-
ture in process monitoring will be discussed. Different techniques
are compared through theoretical analysis and several case studies.
Conclusions are given in the last section.

2. Control region for multivariate statistical process
monitoring

2.1. Hypothesis test based multivariate statistics

Suppose x ∈ Rm represents a measurement vector for process
monitoring which consists of m variables. When a process operates
under a steady condition, x can be viewed as a random vector with
probability density function (PDF) p(x). The problem of multivari-
ate statistical process monitoring can be stated as a hypothesis test
problem with null hypothesis H0 : x ∼ pN(x) and alternative hypoth-
esis H1 : x ∼ pF(x), where pN(x), pF(x) represent PDF for normal data
and faulty data, respectively. Generally speaking, p(x) is unknown
for both normal and faulty situations, however there are usually
abundant normal data and few faulty data. For the case that normal
and faulty data both follow a relatively stable pattern, which means
pN and pf are both approximatively fixed, the problem become

Table 1
Confusion matrix.

Decision (detection)

Accept H0 (not detected) Reject H0 (detected)

Truth
H0 (Normal) Correct

decision
Type I error
(false alarm)

H1 (Fault) Type II error
(missing alarm)

Correct
decision

easier and reduces to a simple test. Furthermore, if both normal and
faulty data are sufficient, the problem is simplified to a binomial
classification problem for single fault detection or a multinomial
classification problem for multiple faults detection. This is a typ-
ical supervised learning problem in the area of machine learning.
There are many efficient discriminators available such as logistic
regression, support vector machine, decision tree and so on.

For the case that faulty pattern are arbitrary and very few faulty
data is available, the hypothesis test are composite test, which
means there is not a single pdf for faulty data. In such a case, a
closed boundary indicating normal region is preferred other than a
separating boundary between normal and faulty data.

Consider the most simplest scenario that both pN and pF are
known and there is a sample to be classified. The above problem
of hypothesis test can be solved by partitioning the whole space
into two  regions, namely control region SN and rejection region SF,
where SN

⋂
SF = �, SN

⋃
SF = Rm. The sample is decided as normal

if and only if x ∈ SN, otherwise a fault is detected. There are two
types of error, which are indicated in confusion matrix (Table 1).
Denote PN(SF) as the probability of type I error (i.e. probability of
false alarm), and PF(SF) as 1- probability of type II error (i.e. prob-
ability of fault detection), then a model with low PN(SF) and high
PF(SF) is preferred. Given a detection logic with a certain threshold,
it is always possible to adjust PN(SF) and PF(SF) by tuning the thresh-
old. In general, when PN(SF) goes down, PF(SF) will go down too. It
is hence reasonable to search a hypothesis test, represented by a
partition SN and SF that maximizes the PF(SF) with a given upper
limit of PN(SF). The problem can be formulated as the following
optimization over the set SF:

max
SF

PF (SF ) =
∫

x ∈ SF

pF (x)dx

s.t. PN(SF ) =
∫

x ∈ SF

pN(x)dx ≤ ˛
(1)

In general, the solution of the above optimization is difficult to fig-
ure out. Fortunately, with the development of statistics, Neyman
and Pearson had solved this problem perfectly.

Lemma  1 (Neyman-Pearson Lemma  [25]). In all the test function �
of simple hypothesis test H0 : x ∼ pN(x) and H1 : x ∼ pF(x), the most
powerful test �* with level  ̨ is to accept H0 when x ∈ S∗

N = {x :
pF (x) ≤ kpN(x)} and reject H0 when x ∈ S∗

F = {x : pF (x) > kpN(x)},
where k is selected so that PN(S∗

F ) = ˛.

The most powerful test with level  ̨ means PF (S∗
F ) ≥ PF (SF ) for arbi-

trary test � with PN(SF) ≤ ˛. This lemma  provides a guidance on
how to construct the most efficient detection index and how to
determine the control limit. However, in most cases of process
monitoring, only normal data is available for estimating the distri-
bution of pN and there is no faulty data for pF. According to principle
of maximum entropy, it is reasonable to assume pF as a uniform dis-
tribution on a fixed range where measured data can reach, which
indicates

S∗
N = {x : pN(x) ≥ p˛} (2)

with p˛ satisfying PN(S∗
F ) = ˛. Therefore, either given the family of

PDF with unknown parameters or only data, once the parameters
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