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1. INTRODUCTION 

Amundson and Aris (AA) studied the open loop (OL) 
dynamics and the closed-loop (CL) behavior with linear P, PI 
and PID control of a two-state continuous exothermic 
jacketed single-component chemical reactor (Aris and 
Amundson; 1959a-c), by combining reactor engineering and 
global dynamics insight, local stability analysis with analytic 
formula, and global dynamics with analog simulation. The 
reactor has a rather reach, simple and complex, dynamical 
nonlinear behavior over its parameter space (Van Heerden, 
1953; Uppal et al, 1974), and has become a benchmark for 
advanced and conventional control development. The related 
literature is abundant and disperse (in few reactor per se 
studies and in many ones with the reactor as application 
example of general-purpose control designs), and here it 
suffices to mention that, in spite of significant advances with 
valuable insight, there are still open problems, among them 
are two addressed in the present study: (i) the first principle-
based construction of control Lyapunov functions, and (ii) the 
rigorous connection between advanced nonlinear and 
industrial linear control approaches. 

Here, the problem of stabilizing with temperature-driven 
output-feedback (OF) control AA’s reactor at an unstable-
nonunique steady-state (SS) is addressed, with emphasis on: 
(i) the trade-off between response speed, robustness, and 
control effort, and (ii) the formal connection between 
advanced nonlinear (passive and dissipative) and industrial 
(PID) control. 

The points of departure are: (i) the nonlocal saturated robust 
nonlinear state-feedback (NLSF) stabilizing control (Alvarez 
et al, 1991; El-Farra and Christofides,2003), (ii) the observer-
based (Alvarez and Fernández, 2009) geometric passive 

NLOF geometric control and its connection with linear PI 
control (Alvarez Ramírez et al, 2002; Gonzalez and Alvarez, 
2005; Schaum et al., 2015), (iii) global motion observability 
(Diaz-Salgado et al. 2012, Moreno and Alvarez, 2015), (iv) 
classic mechanics (Corben and Stehle, 1960), and (v) 
thermodynamics-based constructions of Lyapunov functions 
(Ydstie, 2002; Favache et al, 2011) for control design via 
dissipation for abstract (Solis-Down, 2013) and electro-
mechanical systems (Ortega et al, 2002). 

First, the geometric-passive NLSF control problem is solved, 
with CL globally-robustly stable dynamics accompanied by a 
Lyapunov function in analytic form. Then, classic dynamics 
and nonlinear observer theory are applied to solve the 
nonlocal robust OF stabilization problem with nonlinear and 
linear PID control schemes, including: (i) solvability, (ii) 
systematic construction with reduced model dependency, and 
(iii) simple tuning. 

2. CONTROL PROBLEM 

Consider a (possibly OL unstable) single-reactant exothermic 

continuous reactor, where a reactant is converted into 
product via a first-order reaction rate (��� with Arrhenious 
temperature dependency (�), according to the dimensionless 
dynamic mass and heat balances (Aris, 1969) 

�� � ��� � ����� ����                 ��0� � �� (1a) 
�� � ����� � ���� �� ��� ���,       ��0� � �� (1b) 
� � �� � �,    � � �.   (1c) 
where     ���� � ������ � �� �⁄ �, ����� �� � � � ����  
    ���� �� ��� ��� � ������ � ���� � ����,  ����� � � � �  
� (or �) is the concentration (or temperature) state, � is the 
heat transfer number, � is the measured  volumetric flow rate 
input, �� is frequency factor-Damokholer number product, �� 
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is the activation energy,  � is the measured output 
temperature, �� (or ��) is the measured (or unmeasured) feed 
temperature (or concentration), the coolant temperature �� is 
the control input, and � is the regulated output. In compact 
vector notation, reactor (1) is written as 

�� � ���, �, �, ��,   ��0� � ��,    � � ���,      � � ��� (2) 
where    � � ��, ���,  � � ��,         � � ��, ����    
              � � ��,        �� � �0	���,  �� � ��	���  
� is the state, � (or �) is the measured (or unmeasured) 
input, and � (or �) is the measured (or regulated) output, and 
the constant � (1c) is an adjustable parameter for control 
design. For nominal input ���, ��, ���, the reactor statics, with 
�� SSs ���, are 

�����, ��, ��, ��� � 0, ��� � �����, ��̅ � �����, � � �,� , �� � �    
Depending on its parameters, the OL reactor (2) has simple or 
complex nonlinear dynamics (Uppal et al., 1974). To the 
mass-heat reactor balance (2) we will refer to as Cartesian 

dynamics. 

The problem is to design a dynamic OF stabilizing controller  

�� � ����, �, ��,     ��0� � ��,      � � ����, �, �� (3) 
so that the CL reactor is robustly stable about its (possibly 
OL unstable) nominal SS ��, with: (i) solvability conditions, 
and (ii) simple construction (with model dependency, 
nonlinearity and coupling as small as possible) and tuning. 
We are interested in identifying the trade-off between 
response speed, robustness and control effort, and rigorously 
connecting advanced nonlinear (passive and dissipative) and 
industrial (PID) control. AA’s reactor (Aris, 1969) is chosen 
as case example, with a stable focus ��� (or node ���), and an 
unstable SS (saddle ��): 

�̅ � ��̅ � � � �,    ��̅ � �̅� � � �⁄ ,   �� � ��,    �� � �0 (4) 
��� � �0�0��,���0���,�� � �0��, ���,��� � �0����,������� (5) 

3. OPEN-LOOP DYNAMICS 

Here the global NL OL reactor dynamics are characterized 
with notions and tools from nonlinear dynamics and classical 
mechanics. 

3.1 Cartesian dynamics 

The reactor SSs are in the line set �, which is inscribed in the 
trapezoidal invariant set � (Alvarez et al., 1991; Alvarez et 
al., 2015), i.e.,  

�����,��� � � � �� � ��|0 � �� � ��, �� � ��� � ����� (6a) 
� � � � �� � ��|0 � �� � ��, ��� � � � ������� � �� (6b) 
where     �� � ���� � ��,  ��� � ��� � ������� � ��,  
              ��� � ��� � ����,    ������ � ��� ������ � ���    
� is an invariant set in the sense that any state motion ���� 
born in � stays in X (Hubbard and West, 1995). 

The reactor example (4) has two invariant sets contained in � 
(6b) (see Fig. 1): (i) the separatrix curve �� that contains the 
saddle �� and divides the bassins of attraction ��� and ��� of 
the stable focus ��� and node ���, respectively, and (ii) the 
curve �� that connects the three SSs. The curve �� (or ��) is 

an attractive (or repulsive set) with respect to �. The 
geometry of the OL dynamics of the reactor example (4) is 
presented in Fig. 1, including: (i) the romboid (yellow) set 
where the invariants curves �� (or ��) are reasonably close to 
their tangent line sets �� (or ��) at the unstable saddle SS ��, 
and (ii) the romboid (with slashed boundary) where the 
reactor is expected to operate. These observations suggest 
that the �-parametric lines about �� as set of regulated 
outputs (1c). 

Fig. 1. Geometry of the OL Cartesian reactor dynamics. 

Due to Bendixon-Poincare’s theorem (Hubbard and West, 
1995), each motion ���� reaches asymptotically (with 
characteristic time ��) either a SS point �� or a closed orbit 
����� (Alvarez et al., 1991), i.e., 

�� � � �  ���� � �,   ���� ��� �� or ����� � �.   (7) 
By virtue of Lyapunov’s converse and La Salle’s invariance 
theorems (La Salle and Lefschetz, 1960), there exists an 
“abstract” energy function ���� with dissipation function 
����:  

� � ���� � 0,		�� � ���� � 0	�	� � �,	Δ��� � 0	�	� � � (8)	
Δ��� � ����,��,��,�������, � � �� � �|Δ��� � 0� � �   
where ��� is the directional derivative of � along	�, and the 
union of limit sets � is the largest invariant set contained in 
the null dissipation set �. 
When reactor (2) (Alvarez et al., 2015) is monostable with 
global attractor ��, � � ���� is a single-well (Lyapunov) 
function with global minimum at ��.  When reactor (2) is 
bistable, as in example (5), � � ���� is a two-well surface 
with local minima at ��� and ���, a saddle (in between) at ��, 
and global minimum at the strongest attractor (��� or ���). 
When reactor (2) has a limit cycle with unstable focus ��� and 
orbit curve ��, � � ���� is a sombreroid surface with global 
minimum set (or maximum point)  at �� (or ���).  

3.2 Newtonian dynamics 

Denote by    

� � �,    � � ��,    � � �� � �� (9) 
the reactor temperature “position” �, “velocity” � and 
“acceleration” �, and apply the coordinate change 
� � ��� �����,       � � ����, �, �, �� (10a) 
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