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a  b  s  t  r  a  c  t

With  the  emergence  of  smart  factories,  large  volumes  of process  data  are  collected  and  stored  at  high
sampling  rates  for improved  energy  efficiency,  process  monitoring  and  sustainability.  The data  collected
in  the  course  of  enterprise-wide  operations  consists  of information  from  broadly  deployed  sensors  and
other  control  equipment.  Interpreting  such  large  volumes  of data  with  limited  workforce  is becoming
an  increasingly  common  challenge.  Principal  component  analysis  (PCA)  is  a  widely  accepted  procedure
for  summarizing  data  while  minimizing  information  loss.  It does  so  by  finding  new  variables,  the  prin-
cipal  components  (PCs)  that  are  linear  combinations  of  the  original  variables  in the dataset.  However,
interpreting  PCs  obtained  from  many  variables  from  a  large  dataset  is often  challenging,  especially  in  the
context  of fault  detection  and diagnosis  studies.  Sparse  principal  component  analysis  (SPCA)  is  a  rela-
tively  recent  technique  proposed  for producing  PCs  with  sparse  loadings  via  variance-sparsity  trade-off.
Using  SPCA,  some  of the  loadings  on PCs can be restricted  to zero.  In  this  paper,  we  introduce  a  method  to
select  the  number  of non-zero  loadings  in  each  PC while  using  SPCA.  The  proposed  approach  considerably
improves  the  interpretability  of  PCs  while  minimizing  the  loss  of total  variance  explained.  Furthermore,
we  compare  the  performance  of PCA-  and  SPCA-based  techniques  for fault detection  and  fault  diagnosis.
The  key  features  of  the  methodology  are assessed  through  a  synthetic  example  and  a  comparative  study
of  the  benchmark  Tennessee  Eastman  process.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Smart production technologies that are implemented today
have dramatically intensified data generation and collection
through networked information-based technologies throughout
the chemical industry and other manufacturing enterprises. The
data generation and collection are so fast-paced that humans have
to rely on computers for consuming as well as processing the data.
It is thus imperative to develop dedicated algorithms and methods
to improve process performance and facilitate process surveillance.
These algorithms and methods should, at first, be able to unlock
significant information from large datasets and, second, provide
accurate means to reduce process variability and boost perfor-
mance. Third, they should allow discovery of the underlying process
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dynamics that can substantially improve decision-making. Finally,
steps can then be taken to move toward recommending preemptive
actions (preventive decisions that are made before a failure occurs
or is even observed).

Historically, multivariate statistical analysis and statistical pro-
cess monitoring (SPM) techniques have been applied in a wide
range of fields including genomics, signal processing, and vari-
ous industrial processes [1–5]. Principal component analysis (PCA)
is one of the most commonly used multivariate techniques with
various applications ranging from image recognition to gene engi-
neering to financial or climate data.

PCA preserves as much variability as possible of the dataset by
finding a new set of variables or principal components (PCs) that
are linear combinations of those in the original dataset that suc-
cessively maximize variance and are uncorrelated with each other.
These new sets of PCs are obtained by solving an eigenvalue prob-
lem. PCA captures the variance in m variables of the original dataset
in a reduced dimension by l retained PCs. In most conventional
settings, data is high dimensional but the underlying signal has a
low-dimensional structure. Thus, l is often much smaller than m.  In
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PCA, since the derived PCs are uncorrelated, the distance between
data points is preserved, leading to a diagonal covariance matrix.
However, to satisfy these geometric constraints, most PCs contain
non-zero loadings in all the coordinates. This, in turn, often com-
plicates and confounds the interpretation of PCs, especially when
the dimension m is large.

In most applications, the original variables in a dataset have a
physical meaning and PCA is especially useful if the resulting PCs
are composed of a small number of the original variables. For about
a decade, improving the interpretability of PCs has been a topic
of active research [6–10]. Rotation of PCs is a common practice
wherein the rotated components are easier to interpret without any
loss of information. Once PCs are rotated it is not possible to pre-
serve the property that the components be pairwise uncorrelated
and/or the loadings are orthogonal [8]. When rotating one also has
to choose the normalization to preserve either orthogonality or zero
correlation. In addition, different normalization criteria can lead to
different quantitative results. Moreover, in conventional PCA, the
variance captured by each PC decreases monotonically. However
once the components are rotated this property does not always
hold true.

The rotation methods cannot produce sparse loadings because
they are designed to simplify the loadings while preserving a speci-
fied percentage of variance [11]. In recent years, several approaches
have been proposed that obtain desired sparsity at the cost of
explained variance. The advantage of the optimization approach
is that it pushes some loadings to be exactly zero whereas a rota-
tion usually does not. The simplified component technique (SCoT)
is a penalized formulation wherein the explained variance is maxi-
mized while penalizing the number of non-zero loadings (NNZL) in
a PC [12]. The successive components obtained using SCoT can be
constrained to be uncorrelated with one another to obtain desired
sparsity. Jolliffe and Uddin [12] demonstrated that SCoT drives
many loadings to be identically zero and outperforms rotated PCA
in terms of the varimax criterion [13]. However, SCoT suffers from
having many local optima and the choice of the penalty function is
problem specific. Jolliffe and Uddin [12] did not propose an algo-
rithm or method to determine the best penalty but rather suggested
examining a few penalty values to obtain the desired simplicity of
the derived components.

Jolliffe et al. [14] proposed the Simplified Component Technique
– LASSO (SCoTLASS) which adds a “least absolute shrinkage and
selection operator” (LASSO) constraint to SCoT. The method SCoT-
LASS also modifies the original PCs by driving many loadings to
exactly zero and has clear advantages over rotated PCA and SCoT.
In SCoTLASS an extra constraint is introduced in the form of a bound
on the sum of the absolute values of loadings in that component.
This constraint shrinks some of the loadings on the components
to be zero which makes it more favorable for variable selection.
However, the introduction of the additional constraint requires a
decision on a tuning parameter (t) that limits the search space for
an optimal solution. Jolliffe et al. [14] solved the SCoTLASS by run-
ning the algorithm for a decreasing sequence of values of t resulting
in loadings with different sparsities and correlations between the
PCs. There is no satisfactory rule for selecting t even though the
choice of t is crucial and has to be studied subjectively to obtain a
suitable sparsity-variance tradeoff.

Shen and Huang [15] proposed obtaining sparse PCs using
sparse PCA via regularized SVD (sPCA-rSVD) approach. They
introduced regularization penalties to promote sparsity in PC
loadings. They also suggested a cross validation and an ad hoc
approach for selecting the degree of sparsity as the tuning param-
eter. Journée et al. [16] proposed a generalized power (GPower)
method that treats sparse PCA with either LASSO or cardinal-
ity constraints to produce sparse loading vectors. On the basis
of empirical comparisons presented in the literature, GPower

approach appears to outperform other algorithms in computational
speed.

There are several other methodologies proposed in the liter-
ature to obtain sparse loadings [4,14–20]. Trendafilov [21] and
Jolliffe et al. [11] provided a review of main approaches and recent
developments for improving the simplicity of the components. The
approach used in this paper is the one introduced by Zou et al. [4]
who obtained sparse loadings by reformulating PCA as a regression
problem and imposing LASSO (elastic net) constraints on the L1
norm of the regression coefficients (sparse loadings). This method-
ology known as sparse principal component analysis (SPCA) has
several advantages such as it efficiently solves the optimization
problem with a cost of a single least square fit, can be applied in
the case when m is much larger than sample size and the desired
NNZL can be specified for each component. This SPCA algorithm
will be discussed in detail in the preliminaries section.

Once the desired sparse components are obtained, process mon-
itoring task can be carried out. Liu et al. [22] offered the use of
adaptive sparse PCA (ASPCA) for enhanced process monitoring and
fault isolation. They developed a Bayesian information criterion for
the selection of number of PCs and used Quasi-T2 and SPE moni-
toring statistics for fault isolation. Recently, Yu et al. [23] proposed
the use of robust, nonlinear and sparse PCA (RNSPCA) approach
for fault diagnosis and robust feature discovery of industrial pro-
cesses. With RNSPCA the nonlinear correlations in the process were
captured using Spearman’s and Kendall’s tau correlation matrices.
These correlation matrices were then used to obtain the sparse
eigenvectors to reveal meaningful patters in the data. Yu et al.
[23] observed slightly better or comparable fault detection rates
as compared to kernel principal component analysis (KPCA), ker-
nel independent component analysis (KICA) and robust nonlinear
principal component analysis (RNPCA).

This paper, inspired by the studies mentioned above, outlines an
approach in determining the NNZL on each PC when using SPCA.
Second, we  introduce a fault detection methodology and, to eval-
uate its performance, compare average run length (ARL) and fault
detection rates using SPCA and PCA. The salient features of the pro-
posed method are demonstrated through a synthetic example and
the benchmark Tennessee Eastman process [24].

The paper is organized as follows: the next section briefly
introduces PCA and SPCA concepts for the sake of completeness,
followed by the introduction of the synthetic example and Ten-
nessee Eastman benchmark process simulation case studies. The
methodology for determining NNZL for each principal component
is introduced next. Subsequently, the results obtained from SPCA on
the case studies are compared with the conventional PCA. Finally,
the conclusions and directions for future work are presented.

2. Preliminaries

2.1. Principal component analysis (PCA)

Mathematically, PCA is the eigenvector decomposition of the
covariance or the correlation matrix obtained from data matrix
X ∈ Rn×m that contains n equally spaced (at same time interval)
observations of m process variables and is scaled to zero mean and
unit variance, into a transformed subspace of reduced dimension.
The sample covariance matrix of X is defined as:

cov(X) =  ̇ = XT X

n − 1
(1)

The decomposition is then expressed as follows:

X = TPT = X̃ + E (2)

where T ∈ Rn×m and P ∈ Rm×m are the score matrix and the loading
matrix, respectively. The matrices X̃ and E represent the estimation
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