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a  b  s  t  r  a  c  t

Batch  processing  is  used  extensively  in  the  production  of high  value  products,  and  there  are  strong
economic  incentives  for  developing  methodologies  for  ensuring  the  successful  completion  of batches  via
process  monitoring  and  fault  detection.  Building  on  our  previous  work  using  time-explicit  Kiviat  diagrams
for continuous  processes,  this  paper  introduces  data  visualization,  data-driven  process  monitoring  and
fault  detection  for batch  systems.  Handling  batch  data,  including  unfolding  and  alignment  are  addressed
as  well.  The  proposed  methodology  is  demonstrated  on  data  obtained  from  a  benchmark  bioreactor
simulator  and  a semiconductor  etching  process.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Batch processing is extensively used in the production of high-
value, typically low-volume materials including pharmaceuticals
and microelectronics. The economic cost of lost process perfor-
mance is typically high, and has motivated extensive research in
batch process monitoring, fault detection and control. Data-driven
methods have an important role in this area. The operating data
sets used for model-building purposes comprise measurements of
the process variables collected from many batch runs, and are thus
often of the “big data” class.

A primary challenge for batch process monitoring techniques is
to define “normal” operation, i.e., the “yardstick” by which operat-
ing cycles are evaluated and can be identified as successful or failed.
The states of a batch system are constantly changing and the system
may  go through multiple phases involving multiple unit operations
[20]. As a consequence, there is no nominal steady-state to refer to
(as in the case of continuous systems). Rather, the control, mon-
itoring and performance evaluation methodologies developed for
batch processes must account for their transient, dynamic nature.
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Secondly, batch durations are not fixed, meaning that the dura-
tion of the phases of a batch process can change between runs,
which in turn hinders the use of models that assume that the pro-
cess will or should be in a specific state at a particular time instant.

Finally, there are two different types of variability to consider:
intra-batch variations (variations that occur within a single batch
run) and inter-batch (or run-to-run) variations (variations that
occur across runs). Equivalently, there are two  time scales to con-
sider: a fast time scale which is the order of magnitude of the rate
of evolution of a batch, and a slower time scale that spans the time
horizon of a production campaign that involves multiple batches.

The body of literature on data-driven batch process monitoring
(which, amongst others, attempts to address the above challenges)
is vast [6]. One of the most widespread approaches is multi-way
principal component analysis (MPCA), introduced by Wold et al.
[25] and popularized by Nomikos and MacGregor [18,19]. The
key idea behind MPCA is the batch-wise unfolding of the three-
dimensional (Time × Variables × Batches) batch data matrix into a
specific two-dimensional matrix that captures the variation of the
data across batches, followed by conducting principal component
analysis (PCA) on these “unfolded” data. Several variations of MPCA
methods were introduced later: Yoo et al. [28] and Lee et al. [15]
used multi-model MPCA and kernel MPCA to monitor the different
phases of the batch operation. Li et al. used a recursive approach
with PCA to perform adaptive monitoring of batch processes to
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Fig. 1. Representing multi-dimensional data in time-resolved cylindrical coordinates. A five-dimensional data set with one-minute sampling time is used for illustration
purposes. (For interpretation of the references to color in text, the reader is referred to the web  version of the article.)

update the model [16]. Yoo et al. also explored using independent
component analysis (ICA) to analyze unfolded batch data [27]. Hu
et al. [9] and Kourti et al. [13,12] have also applied the same unfold-
ing method, but using partial least squares (PLS) instead to relate
the batch quality variables to the batch process variables. Wurl et al.
used PLS to specifically monitor batch startup [26].

In a different vein, Meng et al. [17] proposed the use of parallel
factor analysis to perform online batch monitoring, with the benefit
that the method can handle three-dimensional data directly with-
out the need for unfolding. A comparison of the MPCA and PARAFAC
approaches can be found in Westerhuis et al. [23].

An alternate approach to online multivariate statistical process
monitoring can be found in Ündey et al. [21]. Ündey et al. employ
variable-wise unfolding for online process monitoring as it can han-
dle unequal batch lengths easily and avoids the need to account
for uneven batches during data processing. Later works by Yu et al.
[29] and Camacho et al. [3] further develop the use of variable-wise
unfolding in online process monitoring.

Dynamic principal component analysis (DPCA), initially devel-
oped for the analysis of transient continuous processes [14] has
also been applied to batch data, in this case to capture intra-batch
variations [4].

In this paper, we present a novel approach for monitoring and
fault detection in batch processes, based on visualization of batch
operating data. Our work is based on the framework we  recently
introduced for visualization and visualization-based fault detection
for continuous systems [22]. The novelty of the present contribu-
tion consists of an extension of our previous results to account for
the inherent transients present in the operating cycles of batch sys-
tems, while dealing with variability in cycle durations. We  propose
a time-wise unfolding (as opposed to the conventional batch-wise
unfolding) rearrangement of the data collected from multiple runs
of a batch process. We  utilize the resulting “flattened” batch data
to construct reference batch trajectories and the corresponding
time-varying confidence intervals for process monitoring and fault
detection.

The paper is organized as follows: the next section provides a
brief overview of the geometric framework used for data visual-

ization. The unfolding method used in preprocessing the data is
introduced, followed by the method for obtaining the batch trajec-
tory that captures the “normal” operation of the batch process. A
discussion of the batch alignment methods available in the liter-
ature and the method of choice for this paper follows. Case study
results are then presented and discussed. Finally a conclusion and
potential directions for future work are provided.

2. Preliminaries

2.1. Time-resolved radial plots for representing multivariate time
series data

In our previous work [22], we introduced a framework for repre-
senting multi-dimensional time series data in time-resolved radial
coordinates, which we  termed time-explicit Kiviat diagrams. In this
framework, each (appropriately normalized and scaled) data sam-
ple is represented using a radial (Kiviat) plot. The Kiviat plots for
successive samples are stacked equidistantly along a vertical time
axis, thereby creating a spatial representation of a multivariate
time-dependent data set.

We briefly illustrate these concepts using a five-dimensional
data set with one-minute sampling time for illustration purposes.
The first sample is represented in radial coordinates and a time axis
normal to the plane of the plot is added (Fig. 1a). Subsequent sam-
ples are added as radial plots aligned along the time axis (b and c).
The plot can be updated by adding such “data slices” (and removing
older ones) in a first-in, first-out fashion.

This framework affords opportunities for performing fault
detection from both a univariate and a multivariate perspective.
From a univariate standpoint, upper and lower confidence limits
can be defined for each variable, and these bounds can be used to
construct inner and outer convex hulls for the graph. Data sam-
ples whose Kiviat plots fall outside the space defined by the two
hulls are then labeled as corresponding to a faulty operating state.
This is illustrated in Fig. 1d: assuming that samples for t ≤ 3 min
represent normal operation, the normal operating region is defined
as the cylindrical shell (red) between the inner and outer convex
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