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a  b  s  t  r  a  c  t

The  open  and  closed-loop  global  state  probability  density  function  behavior  of  a  class  of single-state
nonlinear chemical  processes  subjected  to additive  and  multiplicative  white  noises  is characterized
with analytic  formulae  through  Fokker  Planck  (FP)  theory,  in  terms  of: (i)  stationary  state  probability
density  function  (PDF),  (ii)  PDF  evolution  along  deterministic,  diffusion,  and  escape  time  scales,  (iii)
conditions  for  PDF  metastability  along  escape  time  scale,  and  (iv)  dependency  of  PDF  motion  on  deter-
ministic  dynamics.  Comparing  with  noise  additivity,  multiplicativeness  can  yield  similar  or  substantially
different  open-loop  PDF  evolution  behavior.  The  application  of control  to an open-loop  (possibly  frag-
ile and  metastable)  multimodal  PDF  yields  a closed-loop  robust  monomodal  PDF  with  mode  regulation
capability.  The  developments  and  findings  are  illustrated  with  numerical  simulations  of  FP’s  PDE  equation.
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1. Introduction

Industrial chemical processes operate subjected to exogenous
(flow, composition, heat exchange rates, etc.) and endogenous
(imperfect mixing-transport, quasi-stationary dynamics, etc.) fluc-
tuations. These processes are modeled by adding additive or
multiplicative exogenous noise to first-principle deterministic
nonlinear models. Additive and multiplicative noises enter the
system through constant and state-dependent gains, respectively,
additive noise with respect to deterministic dynamics introduces
a state probability density (PDF) distribution with extrema (max-
ima, minima and inflections) at the deterministic steady-states, and
noise multiplicativeness against additivity can create or destroy
PDF extrema [1–3]. The need of modeling processes with noise is
motivated by a diversity of problems in kinetics and transport mod-
eling [4,5], as well as in safe process [6], monitoring [7] and control
[8–10] designs.

The global dynamical behavior of a nonlinear system with noise
is formally described by the state PDF evolution, along determinis-
tic, diffusion and escape (related to metastibility) time scales, that
satisfies Fokker-Planck’s (FPs) partial differential equation (PDE)
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[1,3,11]. Since the computational load of FP’s PDE grows rapidly
with dimension, it is solved with: (i) standard (finite difference,
element, volume) PDE solvers for the few-state systems [12,13], or
(ii) specialized Monte Carlo (MC)-based PDE solvers for many-state
systems [14,15]. The FP approach, which has the capability of con-
necting stochastic and deterministic dynamics, has been applied
to a diversity of physics, chemistry, biology, electronic engineering
problems [16,17].

While the design of stochastic controllers for linear systems with
additive noise is a mature field [18,19], the design of nonlinear sys-
tems with multiplicative noise lags far behind. Nonlinear optimal
controllers that ensure mean PDF convergence in probability along
deterministic time scale for nonlinear systems with multiplica-
tive disturbances have been designed on the basis of a stochastic
variation of Hamilton-Jacobi-Isaacs (HJI) nonlinear PDE equation
[2]. This approach provides existence-like solvability results and
insight, but the control construction is a complicated task, and a
complete multiscale PDF description is not provided. Recently, a
combined HJI-FP PDE approach has been proposed to perform con-
trol design with complete PDF description [20]. This motivates an
aim of the present study: the FP-based PDF motion characterization
for a single-state nonlinear chemical process system with mul-
tiplicative disturbances and PDF mode regulation through linear
proportional control.
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Most of the studies on stochastic chemical process systems
have been performed with local (about a deterministic SS) MC
for open-loop stationary regime with unstructured additive noise,
by determining PDF mean and variance through the numerical
integration of an ODE [that approximates Langevin’s stochas-
tic differential equation (SDE)] forced by random steps [4,5,21].
When the PDF is nearly Gaussian, this MC  method yields an
adequate PDF mean-variance result, but yields atypical results
or breakdown when the stationary PDF is multimodal, espe-
cially in close to extrema bifurcation condition. Stationary PDFs
have been tractably described with orthogonal polynomial basis
representation [22–24]. Dabke et al. [25] reported that, in the
additive-to-multiplicative noise passage, a reactor with Brusselator
kinetics with flowrate noise underwent induction of limit cycling
behavior. Vesterinen and Ritala [26] employed a global version of
the SDE-based MC  method to describe the bimodal PDF evolution
of a two-state bioreactor along deterministic time scale. Ratto [8]
and Ratto and Paladino [9] reported that for a two  state-chemical
reactor with stabilizing linear PI control and temperature noise,
the local MC  method functioned well in away from deterministic
bifurcation, but broke down in close to bifurcation. It was  con-
cluded that the assessment of the close-to-bifurcation case requires
a complete global-nonlinear PDF modeling approach. The local and
global ODE-based MC  methods employed in previous chemical
process studies cannot: (i) describe the evolution along diffusion
time scale and metastability along escape time scale, and (ii) con-
nect stochastic and deterministic dynamics. The global-nonlinear
FP PDE-based approach has been applied to formally (with analytic
formulae) characterize single-state nonlinear systems with white
noise: the stationary PDF of an adiabatic combustion reactor [27],
and the PDF evolution along deterministic, diffusion and escape
time scales of an isothermal reactor with Langmuir Hinshelwood
kinetics [28]. The more complex case with multiplicative noise has
been addressed for linear heat exchange systems [29]. These open-
loop studies are methodological points of departure for the present
study on open and closed-loop single-state nonlinear systems with
multiplicative noise.

In this study the problem of formally characterizing (with ana-
lytic formula as much as possible) with FP theory the PDF evolution
of a class of open and closed-loop single-state multi-noise input
nonlinear chemical process systems with additive (unstructured)
and multiplicative (structured) noises is addressed, in understand-
ing that, in spite of its simplicity, the class of systems addressed
captures the most relevant phenomena that occur in many-state
stochastic chemical processes with complex dynamics. The aims
are to identify the dependency of the stochastics on determinis-
tic dynamics, and to characterize the PDF evolution in terms of: (i)
open- closed-loop stationary state and control PDF, (ii) determin-
istic, diffusion, and escape time scales along which PDF evolution
occurs, and (iii) conditions for PDF metastability along escape time.
The development and findings are illustrated with a representa-
tive case example, studied before with FP theory for the case of
only unstructured additive noise [28]: a nearly isothermal reactor
with Langmuir-Hinshelwood kinetics and structured multiplicative
noise.

2. Stochastic modeling problem

Consider the nonlinear open-loop process made by the inter-
connection of the first-principle model (1a) with state x and
characteristic time tx, and unmodeled parasitic dynamics (1b) [30]
with state � and comparatively smaller characteristic time t�:

ẋ = f (x,  p + p̃) + f̃
[
x; �, p̃,  we (t)

]
, x (0) = xo; x ∈ X (1a)

�̇ = f̃�
[
x; � (t) , we (t)

]
, � (0) = �o; � ∈ X�, p ∈ P (1b)

where

f̃ (x; 0, 0) = 0, f̃� (x; 0, 0) = 0, dim� = n�, � ∈ X�,

p is the model parameter and p̃ its error, and we is an exogenous
input that fluctuates abouts its nominal value we = 0, the nominal
value of � is � = 0, S is the set of ns roots (xi) of the nonlinear alge-
braic equation f (x, p) = 0, X, X� and P are bounded sets. The term f̃
in Eq. (1a) manifests the effect of the unmodeled parasitic dynamics
(1b) on the modeled dynamics [4,5,8,28]. The unmodeled parasitic
dynamics (1b) arise from quasi-steady state assumptions like per-
fect mixing, fast species in a reaction network, and so on. The input
fluctuations (we) are due to feed flow, composition and temper-
ature variations around mean value. The parasitic error dynamics
(1b) are robustly input(x, we)-to-state(�)  stable (in a sense to be
precised later) [2], with characteristic time t� comparatively shorter
(faster) than the one (tx) of subsystem (1a), i.e.,

�o /= 0, (x, we) (t) = 0 ⇒ � (t)
4t�→0, t� � tx

(1c)

2.1. Open-loop deterministic dynamics

The errorless modeled dynamics [Eq. (1a) with (p̃, f̃ ) = (0, 0)] is
given by the deterministic ordinary differential equation (ODE):

ẋ = f (x,  p) , x (0) = xo, x ∈ X =
[
x−, x+]

,

p =
(

p1, . . .,  pnp

)T ∈ P (2a)

with ns steady-state (SS) set

S =
{

x1, . . .,  xns

}
, f (xi, p) = 0, xi ∈ X (2b)

where X (or P) is the bounded state (or parameter) set. In gen-
eral, in its parameter space P, this nonlinear system has multiplicity
behavior regions delimited by saddle-node, transcritical and pitch-
fork bifurcation [31]. The solution of this ODE is a state versus time
curve, called motion [32,33],

x (t) = �x (t, xo)
tsx→x ∈ S, x (t) ∈ X (3)

that reaches asymptotically, with settling time tsx ≈ 4tx where tx is
the characteristic time, one (x) of the SS’s, without nothing impor-
tant happening thereafter [34,35].

In terms of the Taylor series expansion [2,36,37]

f (x, p + p̃) = f (x, p) + l (x, p; p̃) + (x, p; p̃)

about p, with linear (l) and high-order ( ) terms, the process-error
dynamics (1) are written as

ẋ = f (x, p) + l (x, p; p̃) + � (x, p; we) ,  x (0) = xo (4a)

�̇ = f̃�
[
x; �, �̃ (t)

]
, � (0) = �o (4b)

where

l (x, p; p̃) =
∑np

i=1�i (x, p) p̃i, �i (x, p) = ∂pi
f (x, p) ,

∂pi
f = ∂f/∂pi, �(x, p ; we) = f̃  [x; �, p̃,  we(t)] + (x, p ; p̃)

where l and are structured and unstructured modeling errors,
respectively. For typical parameter error sizes p̃,  is appreciably
smaller than l [4].

2.2. Open-loop stochastic dynamics

Following stochastic chemical process studies [4,5,28], let us
assume that in Eq. (4): (i) the initial state xo is a random variable
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