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a  b  s  t  r  a  c  t

One-class  classification  plays  a key  role  in  the  detection  of outliers  and  abnormalities.  Recently,  several
attempts  have  been  made  to  extend  the  application  of  one-class  classification  techniques  to  statistical
process  control  problems,  where  many  of  these  one-class  classification-based  approaches  have  used  a
support  vector  data  description  algorithm.  The  monitoring  statistics  for a support  vector  data  description-
based control  chart  are  sufficiently  defined.  However,  the  control  limits  are  not  obvious  because  the
procedure  used  to derive  the control  limit  does  not  include  a  method  for controlling  the false  alarm  rate
(i.e.,  Type  I error rate),  which  clearly  limits  its use  in process  monitoring.  In this study,  we  propose  a new
multivariate  control  chart  based  on a technique  for optimal  false  alarm-controlled  support  vector  data
description,  which  minimizes  the radius  of  a  spherically  shaped  boundary  so  that  it  includes  the  normal
data  that  are  equal  to an  assigned  constant  value.  By  modifying  this  constant  value,  users can  precisely
control  the  proportion  of  abnormal  data  determined  by  the  spherically  shaped  boundary,  which  equals
the expected  Type  I error  rate.  We  demonstrated  the  usefulness  of the  proposed  charts  in  experiments
with  simulated  data  and  real  process  data  based  on a thin  film  transistor–liquid  crystal  display.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Statistical process control (SPC) is one of the most widely used
methods for quality control [1]. The basic objective of SPC is the
rapid detection of any abnormal changes in a process that could
lead to quality deterioration and the production of defective units
[2,3]. An important technique in SPC involves employing a control
chart to monitor a process over time to maintain a normal state.
This monitoring process relies on statistics such as the average,
range, standard deviation, moving average, proportion, and sample
counts. Another component of a control chart is the control limit,
which is generally calculated based on the probability distribution
of the monitoring statistic. The control limit is used to determine
whether the process is normal. If the monitoring statistic exceeds
(or falls below) the control limit, a process abnormality is detected
so an alarm can be issued. In general, control charts are constructed
in two phases, where Phase I analysis separates the normal observa-
tions from the historical data and uses them to calculate the control
limits, and these limits are then used in Phase II analysis to monitor
the process [4].
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Hotelling proposed a multivariate control chart to address
the limitations of univariate controls in the multivariate settings
encountered in many modern systems [5]. Hotelling’s T2 chart (T2

chart) is one of the most popular multivariate control charts for
efficiently monitoring multivariate processes [6,7]. The monitoring
statistic for a T2 chart is:

T2 = (x − x̄)T˙−1 (x − x̄) , (1)

where x̄ is a sample mean vector and  ̇ is a sample covariance
matrix estimated from Phase I data. The T2 statistic is a scaled dis-
tance between the sample mean and an observation where the
degree of scaling is determined by a covariance matrix. When an
observation vector x follows the multivariate normal distribution,
the T2 statistic follows an F distribution [8]. Hence, the control limit
of a T2 chart is determined as the 1−a quantile of the F distribution
to achieve the desired Type I error rate �. Studies have shown that
if the underlying distribution is multivariate normal, the T2 charts
can optimally control the Type I and Type II error rates [9]. T2 charts
are effective in traditional manufacturing processes that generate
normally distributed independent data, but these charts are inca-
pable of processing the large streams of complex high-dimensional
data that are found frequently in modern systems [10].

Modified T2 charts have been developed to address these short-
comings by incorporating variable selection techniques such as
a forward-selection algorithm or a least absolute shrinkage and
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selection operator [11,12]. However, when the process data do
not follow a multivariate normal distribution, T2 charts perform
poorly at controlling the Type I and Type II error rates [4,13–15],
where this occurs frequently in modern manufacturing systems
[16]. Numerous data-driven control charts have been proposed to
overcome the limitations posed by this distribution assumption
[2,17,18,19,20–23] but no consensus has been reached on the best
control chart for nonnormally distributed processes.

Recently, some studies have investigated the use of one-class
classification methods as an alternative to traditional control chart
techniques. Tuerhong et al. [21] proposed a hybrid novelty score-
based control chart that uses monitoring statistics calculated based
on the distance to local observations as well as the distance to
the convex hull constructed by its neighbors. Tuerhong and Kim
[15] compared eight novelty scores in terms of their control chart
performance (e.g., average run length; ARL). Sukchotrat et al. [2]
proposed k-nearest neighbor-based control charts, and Gani and
Limam [24] presented k-means-based control charts, where these
studies used modified versions of the k-nearest neighbor and k-
means algorithms for one-class classification to derive the degree
of abnormality for control charts. Among the various one-class
classification-based approaches, the support vector data descrip-
tion (SVDD) algorithm proposed by Tax and Duin [25] has been used
widely [26]. Sun and Tsung [27] proposed a kernel distance-based
chart (K chart) where the monitoring statistics are the distances
between the sample points and the center of a boundary, and
the radius of the boundary determines the control limits. Sun and
Tsung [27] showed that K charts outperformed the T2 charts when
the data distribution departed from normality. Kumar et al. [28]
proposed a robust K chart based on the normalized monitoring
statistics obtained from a robust support vector algorithm, which
makes the decision boundary less sensitive to noisy observations.
Cho et al. [29] proposed using the SVDD algorithm for monitoring
a microrobotic system and detecting abnormal calibration condi-
tions. Moreover, an improved design of SVDD-based charts using
kernel principal component analysis (PCA) was proposed by Huang
and Yan [22], where they successfully employed the SVDD algo-
rithm to formulate control chart problems, but these charts still
had limitations because the control limit for managing the rate of
false alarms was unclear.

In the present study, we propose a multivariate control chart
based on optimal false alarms controlled by the SVDD algorithm.
The data description algorithm minimizes the radius of a spheri-
cally shaped boundary so it includes the normal data that are equal
to an assigned constant value. By adjusting this constant value,
users can precisely control the proportion of Phase I normal data
delimited by the boundary, which allows the proportion of abnor-
mal  observations to match exactly with the expected Type I error
rate in a Phase I process. The control chart monitors the distances
between observations and the center of the decision boundary as
monitoring statistics. The radius of the decision boundary deter-
mines the control limit of the control chart. The control chart
can monitor a nonlinear and multimodal manufacturing process
because the data description method using the kernel function can
describe data with a flexible decision boundary.

The remainder of this paper is organized as follows. In Section 2,
we describe the original SVDD-based control chart and its limita-
tions. In Section 3, we explain the proposed control chart based on
the optimal false alarm controlled by the SVDD algorithm. In Sec-
tion 4, we present the results obtained when simulation data were
used to demonstrate the effectiveness of the proposed optimal false
alarm controlled by the SVDD-based control chart. In Section 5, we
describe a case study where an actual thin film transistor–liquid
crystal display (TFT–LCD) process was used to demonstrate the

Table 1
List of notations used in this study.

Term Definition

D Data set
a Center of hypersphere
R Radius of hypersphere
N Number of data points in D
Ns Number of support vectors in D
p Number of features in D
i Index of data point i = 1, 2, . . ., N
j  Index of data point j = 1, 2, . . .,  N
k  Index of data point k = 1, 2, . . .,  N
xi i th observation in D
�i i th slack variable for SVDD
f  SVDD parameter for controlling the proportion of abnormal points
�  OSVDD parameter for controlling the proportion of abnormal points
C  Regularization parameter for SVDD (C = 1/f·N)
e  vector with ones in all components
y Dual decision variable
K Kernel function
ϕ  Kernel mapping function
Q Kernel mapping matrix
S Width of the radial basis function
M  Big M:  a large constant value
ε  A small constant value
� Mean vector
˙ Covariance matrix
I  Identity matrix
B Set of observations involved in an optimized decision boundary

applicability of the proposed method. Finally, in Section 6, we  give
our conclusions and suggestions for future research.

2. SVDD

In this section, we describe the previously proposed data
description method called SVDD for constructing a flexible decision
boundary to detect abnormal points. Table 1 shows the notations
used in this study.

SVDD is an extension of support vector machines for solving
one-class classification problems [25]. SVDD produces a closed
boundary around data D, which is called a hypersphere. A hyper-
sphere is characterized by center a and radius R, which is the
distance from a to the boundary. Let xi = [xi1, xi2, ..., xip]T, for i = 1,
2, . . .,  N be a sequence of p-variate training observations. The aim
of the SVDD is to find an optimal hypersphere with a minimum vol-
ume  while maximizing the training observations captured by this
hypersphere. To achieve this goal, the SVDD algorithm solves the
following optimization problem:

Minimize
a,R,�

R2 + C

N∑
i=1

�i, (2)

Subject to‖xi − a‖2 ≤ R2 + �i, i = 1, 2, . . .,  N, (3)

where �i ≥ 0 is the slack variable that allows xi to be outside the
hypersphere and C(> 0) is a regularization parameter that bal-
ances a tradeoff between the volume of the hypersphere and the
errors allowed. We  can avoid an overfitted hypersphere by allow-
ing errors. Tax and Duin [25] proposed determining the best C by
controlling f, which is the proportion of data points outside the
decision boundary:

C = 1
fN
, (4)

where N is the number of observations.
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