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1. INTRODUCTION

Filtering problem has a crucial role in many engineering ap-
plications where state estimation is necessary to design the
control laws or monitor system performance. Many approaches
used to design filters have been developed and can be classi-
fied according to the modeling of uncertainties. Some of them
take the statistical modeling of uncertainties into account, e.g.
Kalman filter is subject to Gaussian noises. The general idea
of stochastic filter is to form an approximation for the real
probability distribution a posteriori of real state given the noisy
measurements of the system. The second group of methods
relies on the representation of uncertainties by compact sets
(intervals, zonotopes), i.e. no assumption about the statistical
properties is then required. This group of methods is known
as set-membership approach. Set-membership state estimation
can be based on interval analysis that was introduced by [Moore
(1966)]. Several algorithms have been proposed, in particular
interval Kalman filter (IKF) developed by [Chen et al. (1997)]
and its improvement [Xiong et al. (2013)], box particle filter
(BPF) [Gning et al. (2007)] which are the extensions of stochas-
tic filters in bounded-error context. Other set-membership ap-
proaches are dedicated to linear models, including ellipsoid
shaped methods [Milanese and Novara (2002)], parallelotope
and zonotope based methods [Combastel (2005)] or a combina-
tion of Kalman filter and zonotope based approach [Combastel
(2015)]. The result of set-membership approaches is a compact
set (intervals, zonotopes) in the state space containing the val-
ues of all the states that are consistent both with the uncertain
model and the measurement. The present paper focuses on
a comparative study between stochastic filters (Kalman filter,
particle filter) and set-membership approach based on interval
analysis.

The paper is organized as follows: after developing the problem
formulation in Section 2, the main ideas of interval analysis
are presented in Section 3. The stochastic filters (Kalman and
particle filter) and their box extensions are detailed in Sections 4
and 5. The advantages and drawbacks of the considered filtering
algorithms are illustrated in Section 6 by a state estimation
problem for a fuel cell system.

2. PROBLEM FORMULATION

Consider the following nonlinear system:

{
xk+1 = f(xk,uk,wk),

yk = h(xk,vk).
(1)

where nx, nu, nw, ny , and nv are respectively the dimensions
of the state x, input u, process noise w, measurement y and
measurement error v vectors. The functions f : Rnx × Rnu ×
Rnw → Rnx , and h : Rnx×Rnv → Rny are possibly nonlinear
functions. In this paper, the process noises and measurement
errors can be represented by a statistical model or by an interval
containing all possible values of uncertainties.

In the case of a linear system with Gaussian noises, the conven-
tional Kalman filter is optimal with small computational effort.
However, if there exist bounded parameter uncertainties due
to modeling error, the Kalman filter cannot guarantee a good
performance for the state estimation problem. A solution is to
apply the improved interval Kalman filter in which the noises
are modeled in a stochastic framework but parameter uncertain-
ties are assumed to be bounded. For instance, we consider the
following linear system:{

xk+1 = Akxk +Bkuk +wk,

yk = Ckxk + vk,
(2)

where the matrices Ak, Bk, Ck and the covariance matrices
Qk, Rk of process noise wk and measurement error vk are
assumed unknown and bounded by known interval matrices, as
defined in the following section.

3. INTERVAL ANALYSIS

This section introduces some basic notions of interval analysis
that are useful to deal with bounded uncertainties [Moore
(1966)] and [Jaulin et al. (2001)].

A real interval, denoted [x] is defined as a closed and connected
subset of R:

[x] = {x ∈ R|x ≤ x ≤ x} , (3)
where x and x are respectively the lower and upper bound of
interval [x]. The width of an interval [x] is defined by |[x]| =
x̄ − x, and its center is C([x]) = (x̄ + x)/2. The set of real
intervals is denoted by IR.

A box of IRn is defined as a Cartesian product of n intervals:
[x] = [x1]× [x2]× · · · × [xn] . (4)
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The set of m × n real interval matrices is denoted by IRm×n.
Classical operations for intervals, interval vectors, interval ma-
trices (e.g. +,−,×,÷,∩,∪,⊂,⊃) are extensions of the same
operations for reals, real vectors, real matrices. Once the ba-
sic notions of interval analysis are defined, it is possible to
evaluate a vectorial function f of interval variables involving
a finite number of arithmetic operations as [f ]. The interval
function [f ] from IRn to IRm is an inclusion function for f
if: f([x]) ⊆ [f ] ([x]), ∀ [x] ⊆ IRn. An inclusion function is
convergent if, for any sequence of boxes [x(k)]:

lim
k→∞

ω([x(k)]) = 0 ⇒ lim
k→∞

ω([f ] ([x(k)])) = 0, (5)

where ω([x]) is the width of the box [x] defined as the maxi-
mum of the widths of its interval components. Finding inclusion
functions evaluating in reasonable computational time and as
close as possible to the image of f([x]) is one of the main
objective of interval analysis.

Interval analysis is also a means of solving systems of equa-
tions given bounded initial conditions. Consider a system of
equations:

f(x) = 0, (6)
where x is a vector of n variables x1, x2, . . . , xn connected
by m constraints f = (f1, f2, . . . , fm). Given the initial do-
main [x] of variables, the goal is to compute the smallest box
[x′] ⊂ [x] containing all solutions x of (6). This problem
can be formulated as a Constraint Satisfaction Problem (CSP),
denoted as H:

H : (f(x) = 0,x ∈ [x]). (7)
Solving this CSP implies finding the smallest box [x′] ⊂ [x]
enclosing the solution set S of H:

S = {x ∈ [x] |f(x) = 0} . (8)
Any operator that can be used to replace [x] by a smaller
domain [x′] such that S ⊆ [x′] ⊆ [x] is called a contractor
for H. Several contractor algorithms are presented in [Jaulin
et al. (2001)], including the Gauss elimination algorithm, the
Gauss-Seidel algorithm, and linear programming.

In many applications, we must find the set of possible values
of variable x given a possibly nonlinear function f from Rn to
Rm and a subset Y of Rm such that f(x) belongs to Y. This
problem is known as a Set inversion problem defined as:

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y). (9)
For any Y ⊆ Rm and for any function f admitting a convergent
inclusion function [f ], we can obtain two regular subpavings X
and X (not necessarily box-shaped) containing the set X by
using the algorithm SIVIA (Set Inverter Via Interval Analysis)
[Jaulin and Walter (1993)].

4. KALMAN FILTER AND BOX EXTENSION

4.1 Kalman filter

The Kalman filter algorithm was originally developed for sys-
tems assumed to be represented with a linear state-space model:{

xk+1 = Akxk +Bkuk +wk,

yk = Ckxk + vk.
(10)

where Ak, Bk, and Ck are matrices of appropriate size. It is
also assumed that this system is excited by uncorrelated zero
mean Gaussian noise processes vk and wk with covariance Qk

and Rk respectively.

The Kalman filter algorithm contains two steps for each itera-
tion: prediction and update (see [Kalman (1960)]).

4.2 Box Kalman filter

In Chen et al. (1997), the interval Kalman filter based on in-
terval conditional expectation for interval linear systems has
been developed. The matrices Ak, Bk, Ck of the linear system
(10) are interval matrices, denoted by [Ak], [Bk], [Ck]. The
initial condition (x0, P0), the control uk and the measurements
yk could be boxes accounting for bounded uncertainties. The
interval Kalman filter has the same structure as the conven-
tional Kalman filter algorithm while preserving the statistical
optimality and the recursive computational scheme.The authors
propose to bypass the singularity problems with interval matrix
inversion by using the upper bound of the interval matrix to
be inverted. This leads to a sub-optimal solution that may not
include all the real solutions consistent with the bounded uncer-
tainties represented in the system.

With the advances in interval analysis and constraint propaga-
tion mentioned in Section 3, a new recursive estimator, known
as improved Interval Kalman Filter (iIKF) has been proposed
in Xiong et al. (2013). The iIKF provides the envelopes of the
set of all possible optimal state estimations and covariance ma-
trices of the Kalman filtering problem. Notice that the matrices
[P−

k ], [P+
k ] and [Sk] should be positive definite, where [P−

k ] =

[Ak][P
+
k−1][Ak]

T + [Qk], [Sk] = [Ck][P
−
k ][Ck]

T + [Rk], and
[P+

k ] = (Inx
− [Kk][Ck])[P

−
k ]. A property of positive definite

matrices is used to contract these matrices: all elements on the
diagonal are positive. This property is guaranteed by three CSPs
performed after computing the matrix M ∈

{
P−
k , P+

k , Sk

}
of

size nM :
HM : [M ]ii > 0, i = 1, . . . , nM .

Another issue to be handled by the iIKF is that the interval
matrix [Sk] may be non-invertible when at least one real matrix
defined using the bounds of the interval matrix is singular.
In [Xiong et al. (2013)], an approach based on set inversion
using contractors and the algorithm SIVIA (see Section 3) has
been suggested to solve this problem. The main idea of this
approach is to replace the interval matrix inversion problem
in the equation Kk = P−

k CT
k S

−1
k by constraint propagation

problems as follows:
[Kk][Sk] = [Tk], (11)

where [Tk] = [P−
k ][Ck]

T . Every component of the gain matrix
[Kk] is considered as an interval in the initial search space
defined as:

[Kk]0 = [Kk]011 × [Kk]012 × · · · × [Kk]0nxny
. (12)

From (11), a linear equation system with the variables [Kk]ij
where i = 1, . . . , nx, and j = 1, . . . , ny , is obtained.

The initial search space [Kk]0 can be obtained in several ways.
When [Sk] is non-singular, equation [Kk] = [P−

k ][Ck]
T [Sk]

−1

can still be used as initial search space. In the opposite case, the
solution is to use the constraint satisfaction technique starting
with a very large initial search space. The contracted sub-
space is then bisected and tested under SIVIA to eliminate the
inconsistent parts. The set of gains given by SIVIA is applied
in the correction step to compute the set of state estimates
and covariance matrices. The hull of all state estimates and
covariance matrices obtained previously are considered as the
state estimate and covariance matrix for the current time step.
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