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a  b  s  t  r  a  c  t

This  paper  addresses  the  decomposition  of network  systems  for distributed  control.  We  construct  a  novel
weighted  input–output  bipartite  graph  representation  of  control  systems,  in  which  the  input–output  edge
weights  capture  topological  connectivity  and short-time  response  sensitivities.  We  then  introduce  com-
munity  detection  as  a network-theoretic  tool  to  generate  a  decomposition  with  strong  intra-subsystem
interactions  and  weak  inter-subsystem  interactions.  A  modularity-based  graph  bisection  procedure  is
applied  recursively  to determine  the  optimal  decomposition.  The  proposed  method  is  applied  to  a  chem-
ical process  network  example.
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1. Introduction

Large-scale systems with complex interconnections, including
biomolecular reactions [56], electric grids [13], cyber-physical sys-
tems [27], and chemical and energy systems [4], typically exhibit
a networked structure. In recent years, a large volume of litera-
ture has emerged on the control and control-relevant analysis of
network systems (see e.g. [3,34,18]). Distributed control plays a
central role in the control of such systems [2]. It is based on a
decomposition of a large-scale network into constituent subsys-
tems, each controlled by a local controller with some degree of
communication between controllers. Distributed control has been
pursued in the context of typical network control problems such
as consensus and formation control [45,57,44], for which there are
well-identified agents to be coordinated. For more general linear
network systems under linear control, significant effort has been
put on the design of well-posed and stabilizing distributed control
laws [10,29], robust stability analysis [1,65] and optimal control
[37,30].

A related direction of research of particular importance to
process systems is the design of distributed model predictive con-
trol (MPC) schemes (see e.g. [50,9,39]). Such controllers retain
the inherent advantages of MPC  (e.g. flexibility of using differ-
ent control objective functions, potential of optimizing process
economics, and direct handling of constraints) while addressing
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its key limitation when applied to large-scale nonlinear systems,
namely the prohibitive cost of the repeated on-line solution of the
underlying dynamic optimization problem. In distributed MPC, the
plant is decomposed into constituent subsystems, and the opti-
mal  control problem is solved in a distributed manner, with some
information sharing between the controllers [31,14,59]. In tightly
interconnected plants with an underlying networked structure the
decomposition of the system into the distributed architecture is
both important and difficult to determine due to the strong and
often hidden interactions among the process variables. It is well rec-
ognized that the optimal decomposition for nonlinear distributed
MPC, i.e. the optimal allocation of the process variables into the dis-
tributed control subsystems in order to reduce the computational
effort without compromising control performance, is an open and
challenging problem [50,9].

Large-scale system decomposition has a long history, especially
in the context of decentralized control. Early efforts seek to detect
the underlying hierarchical (acyclic) pattern and permute the sys-
tem into a hierarchy of subsystems, so that the subsystems become
controllable in sequence [54,53]. This decomposition is achieved
through graph-theoretic search of strongly connected states [35,60]
or acyclic input–output reachable systems [46], with sufficiently
small elements in the coefficient matrix neglected [51]. Later stud-
ies [64,52] considered the situation when the system has a small
number of complicating components between otherwise separable
subsystems and thus exhibit bordered block diagonal interaction
pattern. However, the special graph structures required for these
rearrangements are usually restrictive for process systems, due to
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the complex interactions between the system states and the exis-
tence of recycle structures.

On a different vein, several papers considered the design of
decentralized control architecture as an optimal graph partition-
ing problem. In [19], the number of interconnecting edges is to be
minimized, with size restrictions in the corresponding subsystems.
In [42,43,12], algorithms to partition networks into subnetworks of
approximately equal sizes with minimized interconnections were
developed. The work in [6] sought to partition the graph with a
trade-off among subsystem sizes, interconnections, pairwise dis-
tances and information relevance. The work in [24] proposed using
a system digraph representation with sensitivity weights with a
merging scheme based on LQG regulator metrics. In [62], a com-
putationally expensive genetic algorithm was applied to optimize
the effect of decompositions on the control performance for linear
systems. Several other papers have considered application-specific
decompositions [8,28,38].

From the perspective of network theory, network decom-
position can be considered as a community detection problem.
Community detection aims to divide the vertices of a graph into
subsets (communities), such that the links inside communities sig-
nificantly exceed the links between communities [15,41]. The use of
community detection in the context of control-relevant decompo-
sition has only recently been pursued. A hierarchical agglomerative
clustering approach has been proposed for the generation of
input–output clusters with strong intra-cluster interactions (in an
input–output connectivity sense) and weak inter-cluster coupling;
agglomerative clustering [21] and divisive clustering approaches
have been followed for this purpose [20] to produce candidate
structures with different extents of decentralization. Graph theo-
retic formulations of these methods and a-posteriori assessment of
optimality of the resulting clusters using modularity were proposed
in [25], and extended to PDE-governed systems [36]. Recently,
community detection in the system digraph based on modularity
maximization was proposed to generate well-decoupled subsys-
tems containing inputs, states and outputs [23]. This approach is
based on pure connectivity considerations.

We note that pure variable connectivity such as the one used in
[23] does not account for the intensity of input–output interactions.
On the other hand, classical interaction measures based primarily
on relative gain array [33,26] do not account for the network topol-
ogy. A combination of connectivity and response sensitivities (the
coefficients of the linearized system), in the form of a relative sen-
sitivity array (RSA), was recently proposed [63] and used in the
context of input–output pairing, yet not in the context of network
decomposition for distributed control.

In this work, we define a new interaction measure com-
bining connectivity and response sensitivities, which we  term
input–output affinity,  and use it as the edge weight in an
input–output bipartite graph. We  establish that input–output
affinities capture the intensity of short-time interactions and hence
are suitable measures for decomposing networks for the applica-
tion of nonlinear model predictive control, where, due to the need
for repeated solution of dynamic optimization problems the pre-
diction horizon over which the optimization problem is solved is
usually short. To account for the network topology in the decompo-
sition we focus on the problem of input–output partitioning such
that intra-subsystem input–output interactions are significantly
stronger than inter-subsystem interactions. This is formulated as
a community detection problem on the weighted input–output
bipartite graph. The method of [5], which allows forming communi-
ties from both independent vertex sets (containing the inputs and
outputs in our case) of a bipartite graph using modularity max-
imization, is adopted for the solution of this problem. A chemical

process network example is used to illustrate the application of the
proposed method.

2. Barber’s method for community detection

The problem of community detection in networks has been
studied extensively in network science (see [16] for a recent
review). Among the numerous algorithms of community detection,
modularity-based methods stay as the mainstream, which consider
the community detection problem as the maximization of a quality
function, called modularity,  defined for any partition of the nodes
of the network. Modularity captures the difference between the
number of intra-community edges in the network and its expected
value in a randomized counterpart, thus characterizing the statis-
tical significance of the existence of communities in the network
[17]. The global optimization of modularity over all possible parti-
tions is an NP-hard problem [7]. Approximate algorithms have been
adopted instead to make the modularity maximization problem
computationally tractable. Newman’s spectral method for unipar-
tite networks [40] performs the community detection by recursive
bisections, in which each bisection is determined by the spectral
decomposition of a modularity matrix and an additional adjust-
ment (fine-tuning) step. Barber’s method [5] is an extension of
Newman’s spectral method to bipartite graphs, aiming at detecting
communities comprising of vertices from both independent vertex
sets of such networks. This is the method that will be used in this
paper. The procedure is described below.

Consider a bipartite graph in which U = {ui|i = 1, . . .,  p} and
Y = {yj|j = 1, . . .,  l} are two independent sets of vertices such that
an edge exists between a vertex in U and another vertex in Y. For
unweighted graphs, let aij be the (i, j)th element of the bipartite
adjacency matrix, such that aij = 1 if there is an edge between ui
and yj, and aij = 0 otherwise. Let: ˇ(ui) be the degree of ui, namely
the number of edges linking ui and a vertex in Y; ˇ(yj) be the degree
of yj, namely the number of edges linking a vertex in U and yj; and

 ̌ be the total number of edges, i.e.

ˇ(ui) =
l∑
j=1

aij, ˇ(yj) =
p∑
i=1

aij,  ̌ =
p∑
i=1

l∑
j=1

aij. (1)

As there are  ̌ edges in total, of which ˇ(ui) are incident with ui, the
likelihood for an edge to be incident with ui is ˇ(ui)/ˇ. Similarly, the
likelihood for an edge to be incident with yj is ˇ(yj)/ˇ. The product
ˇ(ui)ˇ(yj)/ˇ2 can then be viewed as the likelihood for an edge to
exist between ui and yj, or the expected fraction of edges connecting
ui and yj. The difference between the fraction of edges between ui
and yj and its expected value,

bij = aij
ˇ

− ˇ(ui)ˇ(yj)

ˇ2

= aij∑p
i′=1

∑l
j′=1ai′j′

−
∑p

i′=1ai′j
∑l

j′=1aij′

(
∑p

i′=1

∑l
j′=1ai′j′ )

2

(2)

is a modularity measure for a pair (ui, yj) that captures the
extent that the relation between ui and yj is closer than randomly
expected. For a weighted graph where aij can take any real value
on a certain interval, bij can be defined in the same way as above.

“Good” communities comprising of vertices from U and Y are
those whose members ui and yj have a positive, large bij. For a
partition P of U ∪ Y into disjoint communities Ck, k = 1, 2, . . .,  its
modularity Q (P) is defined as the sum of all intra-community bij:

Q (P) =
∑
Ck ∈ P

(
∑
yj ∈ Ck

∑
ui ∈ Ck

bij). (3)
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