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a  b  s  t  r  a  c  t

Hypoglycaemia  avoidance  is  one  of the  main  barriers  to  the optimal  management  of  Type  1  Diabetes
(T1D).  In  order to attenuate  the effect  of hypoglycaemia,  alarm  systems  support  T1D  subjects  equipped
with  Continuous  Glucose  Monitoring  (CGM)  devices.  The  development  of predictive  detection  tools  for
hypoglycaemia  and  CGM  have  been  accelerated  by  Artificial  Pancreas  (AP),  a closed-loop  systems  for
automatic  blood  glucose  control  in T1D  subjects.  The  methods  to generate  hypoglycaemia  alarms  can  be
divided  in  two categories:  low-threshold  detection  and  prediction.  The  first  notifies  the crossing  of  a crit-
ical blood  glucose  level,  while  the  second  predicts  this  risk  in advance  and  it is  typically  based  on a  patient
model.  Considering  the  significant  inter-patient  variability  characterizing  T1D  subjects,  patient-tailored
models  are required.  In this  regard,  different  individualization  techniques  have  been  proposed  showing
significant  improvements  compared  to “average”  models.  This  paper  proposes  an  alarm  system  based
on patient-tailored  models  obtained  through  an identification  technique  that exploits  impulse  response
data  collected  in  silico  and  that  is  extended  here  to  be  used  on  free-living  data.  In particular,  the  data  used
in this  work  derive  from  a 1  month  AP  trial  performed  in free-living  conditions.  Individualized  models
obtained  with  different  identification  parameters  are  compared.  Independently  of  the  selected  param-
eters,  the  patient-tailored  models  show  superior  predictive  performance  with  respect  to  the  “average”
model  used  in  the  Model  Predictive  Control  (MPC)  algorithm  used  in  the  trial.  The best  model  is  used  to
design  an alarm  system  which  shows  significant  improvements  in hypoglycaemia  detection  in  compar-
ison  with the safety  system  used  in the  trial:  true positive  are  increased  by 31%  with  a  decrease  of  the
false  positive  by  57%.  The  promising  prediction  capabilities  of the proposed  patient-tailored  models  can
be  a key  ingredient  for  a  new  generation  of individualised  MPC  for AP.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Type 1 Diabetes (T1D) is a pathology characterized by high Blood
Glucose (BG) level, known as hyperglycemia (BG > 180 mg/dl),
caused by the dysfunction of pancreatic ˇ-cells responsible for the
production of insulin. Subjects with T1D need exogenous insulin
administration to maintain the BG level in the acceptable range
[70–180 mg/dl]; the goal is to minimize diabetes complications
related to hyperglycemia and simultaneously avoid hypoglycaemia
(BG < 70 mg/dl), a condition that could be caused by excessive
insulin administration. Hypoglycaemia avoidance is one of the
main barriers to optimal management of diabetes.
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In order to ensure the patient safety, alarm systems were
designed to detect hypoglycaemia risks and eventually prevent
them [1]. These alarms are already present on some commercial
CGM devices and they have a key role in a successful insulin treat-
ment. The development of detection systems for hypoglycaemia
has been accelerated by Artificial Pancreas (AP), a closed-loop sys-
tem for automatic blood glucose control in T1D subjects [2–4]. In
fact, in order to perform long trial in free-living conditions, the AP
has to be equipped with a safety system to prevent hypoglycaemia.
In the last two  years a number of clinical studies have shown the
efficacy of AP prototypes used from 1 to 6 months [5–9].

The methods designed to generate the alarms can be divided
in two  categories: low-threshold detection or prediction. Hypogly-
caemia alarms based on low-threshold detection notify the crossing
of a critical BG level [10], while alarms based on prediction try to
forsee this risk in advance to give the user the opportunity to act
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ahead of time in order to avoid the event [11–14]. The latter typ-
ically requires the use of patient models to perform glucose trend
predictions.

Glucose-insulin minimal models were the first to be accepted
both as a clinical tool and an approach to understand the compos-
ite effects of insulin secretion and insulin sensitivity on glucose
tolerance [15,16]. However, since a significant inter-patient vari-
ability characterizes T1D population, the need for more detailed
models equipped with a virtual population was absolutely clear in
order to accelerate the development of an AP. A rich population
model could in fact substitute the animal trials with the in silico
ones. The first example was the UVA/Padova simulator [17,18] that
offers a compartmental model equipped with 100 vectors of model
parameters, the so called “virtual patients”. The average parameters
vector of these patients describes the so called “average patient”
that represents a patient with the average dynamics of the popula-
tion. A third class of models typically identified from real-life data
consists in black-box linear models. Recently, new identification
techniques have been investigated [19–26]. For a comprehensive
literature review and some interesting related papers we  refer the
interested reader to [27–31].

Promising results have been obtained on this topic also by our
group [32–34]. These algorithms have been successfully tested in
silico, i.e. using the UVA/Padova simulator [17,18] and some of them
have been compared to “average” virtual model in [34]. In silico data
were obtained through closed-loop simulations of realistic clinical
protocols designed to produce a sufficient input-output excitation
without compromising the patient safety.

The big challenge of this paper is to use one of the proposed
algorithms to identify individualized models from free-living data
[5] and to develop a personalized hypoglycaemia alarm system
validated on a rather long period (1 month). Along this line, an
intermediate step was successfully addressed in [33] where real
data were used even if not collected in free-living conditions, but
during a short and controlled trial on hospitalized patients (less
than 24h). In that case the non-parametric technique described
in [34] was tested. The identification of reliable models on real
data is more difficult than on simulated ones. Moreover, free-living
conditions are much more challenging than the highly controlled
experimental conditions of in hospital studies, due to the many con-
founding factors affecting blood glucose in real-life, such as physical
exercise and differences in daily activities. Technical issues affect-
ing the AP prototype, adopted during the trials, and human errors
in patient-provided information further complicate this set-up. All
these aspects require adaptations of the identification techniques,
originally developed for in silico data, to deal with all these issues.

The identification technique adopted in this paper is the exten-
sion of the Impulse-Response (IR) technique described in [32] to
cope with free-living data proposed in [35]. This technique is rather
simple and obtained very promising in silico results. In order to
evaluate the quality of the proposed individualized model, two
different comparisons have been performed: the first with the
“average” model used to design an MPC  and the second with a
safety system. Both the considered MPC  and the safety system
were used in several recent clinical trials and in particular in the
one considered in this paper [5]. The performance achieved on the
real-life data by the proposed individualized model with different
identification parameters are compared with the one achieved by
the model used to design the MPC  algorithm which was  derived
via linearization from the “average” model of the adult population
of the UVA/Padova simulator. This “average” model showed good
performance when used in the MPC  algorithm tested during sev-
eral trials and in particular in the one which achieved a significant
reduction of the HbA1c [36]. The patient-tailored model with the
parameters that obtained the best performance is used to create a
system to detect in advance hypoglycaemia phenomena. The per-

formance of the proposed system is compared to the one achieved
by the algorithm for hypoglycaemia prevention [12] used in several
clinical trials, see e.g. [5,36]. The new alarm system shows signif-
icant improvements in hypoglycaemia detection in terms of both
true and false positive. The core of the AP adopted in [5,7,37–41] is
constituted by the MPC  algorithm described in [42]. The improve-
ment of the prediction capability of the individualized model with
respect to “average” model used to synthetize this MPC algorithm
paves the way for a new generation of individualized MPC  for AP.

The paper is structured as follows. In Section 2 we  describe the
model identification method. In Section 3 we  describe the type of
data employed in this paper: trials description, data preprocess-
ing, training and test sets. Section 4 introduces the metrics used to
evaluate the model identification technique. Section 5 presents and
discusses the identification results. In Section 6 the individualized
alarm system is proposed. In Section 7 the metrics used to evaluate
the alarm system are introduced. The results obtained with the new
alarm system are proposed in Section 8. Conclusions are drawn in
Section 9.

2. Model identification

The measurable inputs of the patient model are the injected
insulin in pmol/min/kg, i(k), and the carbohydrates content in mg,
m(k). The model output is the glucose concentration measured by
the CGM sensor, CGM(k). All these signals are collected every Ts

minutes, with Ts = 5 [min]. Denoting with I(z), M(z) and CGM(z) the
Z-transforms of inputs and output, the model has the following
structure:

CGM(z) = Gi(z)I(z) + Gm(z)M(z) + E(z) (1)

where Gi(z) and Gm(z) are transfer functions to be estimated from
the data and E(z) is the Z-transform of the residual error e(k). Besides
insulin and meal, a number of other unmeasurable factors affect
blood glucose concentration, first and foremost physical exercise,
but also stress, illness, menstrual cycle, etc. The effect of these
unmeasured factors and other unmodeled dynamics are partially
accounted for by assuming e(k) to be a coloured noise, i.e. assuming
that e(k) is correlated with the past errors e(k − 1), e(k − 2), . . ..  Also
the spectral characterization of the error has to be estimated from
the data.

2.1. Continuous-time impulse response model

In order to successfully identify a black-box model, it is neces-
sary to have sufficiently exciting input data and to properly define
the order of the system. Impulse signals are the most exciting inputs
and are naturally used in continuous time. Hence, following the pro-
cedure described in [32], we  first identify a continuous-time model
to describe the deterministic part of the system:

CGM(s) = Gi(s)I(s) + Gm(s)M(s)

where Gi(s) and Gm(s) are transfer functions to be estimated from
the data, I(s), M(s) and CGM(s) are the Laplace transforms of inputs,
i(t) and m(t), and output, CGM(t). Due to the impossibility of
performing extensive and potentially dangerous experiments on
human subjects, the identification technique is divided in two
steps: the first one is entirely developed on the “average” in silico
patient (Av) of the UVA/Padova simulator [18] with highly exciting
input data that could not be applied on human subjects. For exam-
ple, it is important to have insulin boluses (impulse-like amount)
without meal intake as well as uncontrolled meals (meals without
insulin boluses). The outputs of this first step are the two transfer
functions Gi(s) and Gm(s) that describe the dynamics of the “aver-
age” patient. Starting from the Av model obtained in step 1, the
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