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Abstract: An algorithm for the identification of nonlinear black-box systems is introduced using
novel techniques for the regularized estimation of impulse responses for linear systems. Based on a
comparison of the advantages and disadvantages of (N)FIR and (N)ARX model structures for the
linear and nonlinear case it is outlined that the novel regularized FIR model estimation removes
the major drawback of high parameter variance from the FIR model and makes it thus usable
as a local model structure in local model networks. The estimation of the local FIR models is
performed with a special regularization matrix, which is derived from the concept of reproducing
kernel Hilbert spaces incorparating the knowledge of the exponential decay of the impulse response
of a stable system. The algorithm is applied to a test system and is, in contrast to local ARX
models, always able to achieve stability and a fairly good prediction accuracy.
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1. INTRODUCTION

In this contribution the problem of nonlinear system iden-
tification is considered. Therefore N measurements Z =
{(ui, yi)}i=1,...,N are given, which have been generated by
a nonlinear dynamic system described by the input/output
relationship

yk = f(yk−1, ..., yk−n, uk, ..., uk−n)) + dk. (1)

Here dk is a white noise sequence with variance σ2, yk is
the model output and uk is the input at the discrete time
step k. The problem of identifcation is now to find a model
f̂ that is able to describe the behaviour of the true process
f based on the measurements Z.

When f is a linear function the problem is, compared
to the nonlinear case, in a mature terrain which is usu-
ally treated by prediction error methods (PEM), for an
overview see e.g. Ljung (1999). Nevertheless recently for
the identification of linear systems a novel method has
been proposed by Pillonetto and De Nicolao (2010) for the
identification of FIR systems which is related to classical
regularization approaches by Chen et al. (2012). A good
overview of these novel methods is provided by Pillonetto
et al. (2014). These contributions propose a novel regular-
ization approach, which considers the stability property of
the system and penalizes the integral of the squared first
or second order derivative of the impulse response. Since
compared to other problems in the field of machine learn-
ing the number of datapoints strongly exceeds the number
of parameters efficient algorithms have been developed by
Chen and Ljung (2013), which consider this property. For
a general overview of kernel methods in machine learning
the reader is referred to the books Schölkopf and Smola
(2002) or Rasmussen and Williams (2005).

Unfortunatly the behaviour of many technical and also
other systems strongly depends on their operation point.
Thus the problem of system identification is nonlinear for
these systems. Local model networks identified with the
LOLIMOT algorithm, see Nelles (1997) or for a compre-
hensive treatment Nelles (2001), offer a good way to extend
many approaches used for linear system identification to
the nonlinear case, since the subsequent splitting of the
models provides a good way to deal with the curse of
dimensionality. In this contribution it will be shown that
this is possible for the regularized FIR identification ap-
proach as well. Therefore regularized local models will be
identified with the LOLIMOT construction algorithm.

The sequel of the contribution is as follows: First ARX
and FIR as basic model structures for linear and nonlinear
systems are reviewed and compared. In Sect. 3 identifica-
tion of locally regularized FIR models with LOLIMOT
will be described and in Sect. 4 it will be shown how
the novel regularization approaches can be incorparated
in the local model identification. Section 5 reviews the
implementation of the regularized identification suited for
system identification and describes how to calculate the
number of effective parameters in that framework. In the
last section the performance of the proposed algorithm
and the shortcomings of local ARX models will be demon-
strated with an example.

2. COMPARISON OF ARX AND FIR MODEL
STRUCTURES

The most commonly applied models for the identification
task are the ARX model and the FIR model. In the ARX
case the model f̂ depends on the previous n outputs yk =
(yk−1, . . . , yk−n) and delayed inputs uk = (uk−1, . . . , uk−n)
of the system, while in the the FIR case only delayed
versions of the inputs are utlized in the model. For FIR
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Fig. 1. General NARX and NFIR model structure

models n has to be chosen significantly higher than for
ARX models. The general structure is depicted in Fig. 1,
where the gray elements have to be omitted in the NFIR
case.

2.1 The linear case

If the model f̂ is chosen linear the general NARX model
simplifies to

ŷk = b1uk−1 + . . .+ bnuk−n (2)

+ a1yk−1 + . . .+ anyk−n

and the FIR model can be written as

ŷk = b1uk−1 + . . .+ bnuk−n. (3)

This is illustrated in Fig. 2 where also the effect of the
noise dk is displayed.
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Fig. 2. Model structure of linear ARX and FIR model

ARX and FIR are both linear regression structures and
thus can be estimated by least squares. Beside the fact that
both are simple and relatively easy to handle this is most
certainly the reason why both are very popular. In the
assessment of the authors, the number of ARX compared
to FIR model applications might be around a ratio of 2:1.
One difference between the ARX and the FIR model is
the error that is optimized. While ARX optimizes the
equation (one-step prediction) error, FIR optimizes the
output (simulation) error. Usually the simulation error is
the true objective and the equation error is just required
as an approximation to keep the model linear in its pa-
rameters. Furthermore the parameter estimation for the
ARX is biased for white output disturbances favoring high
frequencies, while the FIR structure is not. Comparing
the selected model order ARX typically is very sensitive
with respect to the ’correct’ model structure, that is or-
der and dead time. Also here FIR is superior since the

order corresponds just to the degree of accuracy. Dead
time and order of the process are kind of automatically
’detected’ by FIR due to the estimation of the impulse
response coefficients. An advantage of the ARX model
is, that it can be utilized for the description of unstable
processes. Unfortunatly this also means that ARX models
can become unstable for stable processes because of errors
in the estimated coefficients. The greatest advantage of the
ARX model structure compared to FIR models is that the
number of parameters is significantly lower, which influ-
ences the bias-variance tradeoff in a considerably positive
way. Recently this disadvantage has been removed with
the application of regularization techniques by Pillonetto
and De Nicolao (2010) and this makes FIR structures now
very advantageous for the linear case. Before continuing
the discussion of how to apply these results in the nonlinear
case, it will be discussed how ARX and FIR models in
general behave in that case.

2.2 The nonlinear case

For models with a nonlinear structure all of the consider-
ations for linear systems hold as well. Additionally, some
new aspects need to be taken into account and some of
the properties above have to be weighted very differently.
While in the linear case FIR requires much more param-
eters than ARX, in the nonlinear case it requires much
more dimensions. Estimation of paramters is problematic
because the compelxity of least squares solution is O(n3)
and FIR models often exhibit too high variance errors.
However, more dimensions are often catastrophic due to
the curse of dimensionality. This is the main reason why
NARX is much more widely used than NFIR. In the
assessment of the authors, the number of NARX vs. NFIR
model applications might be around a ratio of at least 20:1.
Unfortunately NARX models tend to run into stability
problems (see the example in Sect. 6). While in the linear
case, model stability can at least be readily checked by
calculating the poles, this is not so easy in the nonlinear
case. This issue is a constant concern in industry and calls
for better solutions.
Most of the above arguments for (N)FIR models generalize
to any orthonormal basis functions model (like Laguerre
or Kautz). However, important new and complex issues
arise with respect to the determination of the filter pole(s)
that are beyond the scope of this paper.
In summary, ARX and FIR approaches have their own,
often opposite, advantages and drawbacks. In the linear
case the overall assessment depends on the circumstances.
Both approaches are realistic for applications. In the non-
linear world, the high dimensionality of NFIR practically
ruins this approach.
Local linear model networks offer a loophole to this
dilemma. The input space for the local linear models may
be chosen high-dimensional therefore yielding many pa-
rameters to be estimated for the local FIR models. But the
input space for the validity functions that control which
local linear model is how much active, can often be chosen
very low-dimensional comparable (or identical) to NARX.
This brings the tradeoffs between NARX and NFIR back
to (or at least closer to) the tradeoffs in the linear scenario.

IFAC ICONS 2016
June 1-3, 2016. Reims, France

62



Download English Version:

https://daneshyari.com/en/article/710433

Download Persian Version:

https://daneshyari.com/article/710433

Daneshyari.com

https://daneshyari.com/en/article/710433
https://daneshyari.com/article/710433
https://daneshyari.com

