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1. INTRODUCTION

Nonlinear systems can be modeled as the so-called Takagi-
Sugeno systems, via the well-known sector-nonlinearity ap-
proach (Tanaka and Wang, 2001). Usual developments for
Takagi-Sugeno systems regarding optimal control set up
LMI conditions in order to find the so-called guaranteed-
cost Lyapunov solutions (Wu and Cai, 2004). Such solu-
tions are shape-independent (i.e., the actual membership
function shape is assumed to be known at runtime, but
not at design time) and, hence, conservative (Sala, 2009).

On the other hand, there is plenty of literature related
to Reinforcement learning, e.g. (Sutton and Barto, 1998),
neuro-dynamic programming (Bertsekas and Tsitsiklis,
1996), approximate dynamic programming (Powell, 2011),
adaptive dynamic programming (Zhang et al., 2012), Q-
learning (Watkins and Dayan, 1992), etc. which dates from
Bellman’s optimality principle in the 1950s with viable
computational implementations starting in the late 1980s.
Reinforcement learning approaches have been mathemat-
ically formalised in a control related context with the aim
to convert these ideas into practically feasible approaches
e.g.(Lewis and Vrabie, 2009), (Lewis et al., 2012), (Lewis
and Liu, 2013) (Kiumarsi et al., 2014).

The objective of this paper is bridging these two ap-
proaches to optimal control of nonlinear systems: given
a nonlinear system in Takagi-Sugeno form, the LMI so-
lution and the PDC-like controller structures associated
to them will inspire a particular parametrization of Q-
learning algorithms so that such learning algorithm can be
initialized with the LMI solution. Also, higher-dimensional
summations will allow improving the learning solution.

� The authors are grateful to projects DPI2011-27845-C02-01
and DPI2013-42302-R from Spanish Government, Grant PROM-
ETEOII/2013/004 from Generalitat Valenciana and Ph.D. grant
SENESCYT from the Government of Ecuador.

The structure of the paper is as follows: Section 2 intro-
duces necessary preliminaries of the paper and states the
problem. Section 3 describes the contribution of the paper.
An example is given in Section 4 and some conclusions are
given in Section 5.

Notation: Rm×n will denote the real matrices of size m×
n and given a set of s symbolic variables ξ = {ξ1, . . . , ξs},
notation

[(
ξ
q

)]
will denote the vector of all degree q

monomials in variables ξ, comprised of (s+q−1)!
q!(s−1)! elements,

in a suitably prefixed ordering such as, for instance,
lexicographical.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Nonlinear sector Takagi-Sugeno models

Consider a nonlinear discrete-time system

xt+1 = f(xt, ut), (1)

with xt ∈ X ⊂ Rnx and ut ∈ U ⊂ Rnu being the
model validity and input constraint region, being nx and
nu the number of states and inputs, respectively. The
nonlinear system in (1) can be exactly modelled using
sector nonlinearity based on Takagi-Sugeno fuzzy models
(Tanaka and Wang, 2001):

xt+1 =

ρ∑
i=1

µi(xt)(Aixt +Biut) (2)

being µ(xt) = {µ1(xt), . . . , µρ(xt)} a set of ρ = 2p

nonlinear membership functions, with p the number of
nonlinearities, where

ρ∑
i=1

µi(xt) = 1, 0 ≤ µi(xt) ≤ 1 (3)

It is assumed, in (2), that nonlinearities of the model µi(xt)
are known functions and therefore they can be evaluated
for a given state.
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Universitat Politècnica de València, C/Camino de Vera s/n, 46022,

Valencia, Spain (e-mail: hendia@posgrado.upv.es).

Abstract: This paper presents a preliminary attempt to bridge the conservative (shape-
independent) results from guaranteed-cost LMIs and the reinforcement learning setups which
learn optimal controllers from data. In this sense, the proposed approach uses an initialization
based on the LMI solution and proposes an approximation of the Q-function using polynomials of
the membership functions in Takagi-Sugeno models. The resulting controller is shape-dependent,
that is, uses the knowledge of membership functions and data to clearly improve LMI solutions.

Keywords: Reinforcement learning, adaptive dynamic programming, Q-learning,
Takagi-Sugeno, LMI.

1. INTRODUCTION

Nonlinear systems can be modeled as the so-called Takagi-
Sugeno systems, via the well-known sector-nonlinearity ap-
proach (Tanaka and Wang, 2001). Usual developments for
Takagi-Sugeno systems regarding optimal control set up
LMI conditions in order to find the so-called guaranteed-
cost Lyapunov solutions (Wu and Cai, 2004). Such solu-
tions are shape-independent (i.e., the actual membership
function shape is assumed to be known at runtime, but
not at design time) and, hence, conservative (Sala, 2009).

On the other hand, there is plenty of literature related
to Reinforcement learning, e.g. (Sutton and Barto, 1998),
neuro-dynamic programming (Bertsekas and Tsitsiklis,
1996), approximate dynamic programming (Powell, 2011),
adaptive dynamic programming (Zhang et al., 2012), Q-
learning (Watkins and Dayan, 1992), etc. which dates from
Bellman’s optimality principle in the 1950s with viable
computational implementations starting in the late 1980s.
Reinforcement learning approaches have been mathemat-
ically formalised in a control related context with the aim
to convert these ideas into practically feasible approaches
e.g.(Lewis and Vrabie, 2009), (Lewis et al., 2012), (Lewis
and Liu, 2013) (Kiumarsi et al., 2014).

The objective of this paper is bridging these two ap-
proaches to optimal control of nonlinear systems: given
a nonlinear system in Takagi-Sugeno form, the LMI so-
lution and the PDC-like controller structures associated
to them will inspire a particular parametrization of Q-
learning algorithms so that such learning algorithm can be
initialized with the LMI solution. Also, higher-dimensional
summations will allow improving the learning solution.

� The authors are grateful to projects DPI2011-27845-C02-01
and DPI2013-42302-R from Spanish Government, Grant PROM-
ETEOII/2013/004 from Generalitat Valenciana and Ph.D. grant
SENESCYT from the Government of Ecuador.

The structure of the paper is as follows: Section 2 intro-
duces necessary preliminaries of the paper and states the
problem. Section 3 describes the contribution of the paper.
An example is given in Section 4 and some conclusions are
given in Section 5.

Notation: Rm×n will denote the real matrices of size m×
n and given a set of s symbolic variables ξ = {ξ1, . . . , ξs},
notation

[(
ξ
q

)]
will denote the vector of all degree q

monomials in variables ξ, comprised of (s+q−1)!
q!(s−1)! elements,

in a suitably prefixed ordering such as, for instance,
lexicographical.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Nonlinear sector Takagi-Sugeno models

Consider a nonlinear discrete-time system

xt+1 = f(xt, ut), (1)

with xt ∈ X ⊂ Rnx and ut ∈ U ⊂ Rnu being the
model validity and input constraint region, being nx and
nu the number of states and inputs, respectively. The
nonlinear system in (1) can be exactly modelled using
sector nonlinearity based on Takagi-Sugeno fuzzy models
(Tanaka and Wang, 2001):

xt+1 =

ρ∑
i=1

µi(xt)(Aixt +Biut) (2)

being µ(xt) = {µ1(xt), . . . , µρ(xt)} a set of ρ = 2p

nonlinear membership functions, with p the number of
nonlinearities, where

ρ∑
i=1

µi(xt) = 1, 0 ≤ µi(xt) ≤ 1 (3)

It is assumed, in (2), that nonlinearities of the model µi(xt)
are known functions and therefore they can be evaluated
for a given state.

4th IFAC International Conference on
Intelligent Control and Automation Sciences
June 1-3, 2016. Reims, France

Copyright © 2016 IFAC

Improvement of LMI controllers of
Takagi-Sugeno models via Q-learning �

Henry Dı́az, Leopoldo Armesto, Antonio Sala

Inst. Univ. Autom. Inf. Industrial (AI2), Inst. Diseño Fabric. (IDF),
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2.2 Q-learning and optimal control

For a given arbitrary (stabilising) state-feedback policy,
also known as “control law”, ut := π(xt) and initial state
x0, a scalar value function:

V π(x0) :=

∞∑
t=0

γtr(xt, ut)=

∞∑
t=0

γt
(
xT
t Hxxt+uT

t Huut

)

(4)
can be computed, being γ ≥ 1 a decay rate, rt ≡
r(xt, ut) the so-called immediate reward or “cost” and
Hx ∈ Rnx×nx and Hu ∈ Rnu×nu weighting matrices of
the quadratic cost function.

The control objective is to design a controller ut =
π(xt) such that V π(xt) is minimised. This objective is
a generalization of the standard LQR/predictive to a
nonlinear case. The parameter γ penalises costs later in
time, so in a linear case it enforces a LQR with prescribed
decay (a guaranteed discrete-time pole z faster than those
with |z̄| = γ−1. Using the well-known Bellman equation,
the value function can be computed by solving:

V π(xt) = rt+γV π(xt+1)= r(xt, π(xt))+γV π(f(xt, π(xt))),

which can be seen as the expected return (cost) for a given
state xt if policy π(xt) were used at all future times. In
addition to this, the action-value function Qπ(xt, ut) is
defined as the return for a given state and action, also
known as Q-function:

Qπ(xt, ut) := r(xt, ut) + γV π(xt+1). (5)

For a given fixed policy π(xt), the following equivalence
holds V π(xt) = Qπ(xt, π(xt)), and therefore the Q-function
can be also expressed using the Bellman’s equation:

Qπ(xt, ut) = r(xt, ut) + γQπ(xt+1, π(xt+1)). (6)

The optimal value function V π∗
(xt) and optimal control

policy can be derived from the optimal action-value func-
tion Qπ∗

(xt, ut) using Bellman’s principle of optimality:

V π∗
(xt) := min

ut

Qπ∗
(xt, ut) (7)

u∗
t := π∗(xt) = argmin

ut

Qπ∗
(xt, ut). (8)

There are quite a few iterative algorithms to estimate such
optimal policy in literature, based on dynamic program-
ming (Bellman, 1957) and reinforcement learning (Sutton
and Barto, 1998), such as value iteration, policy iteration,
actor-critic setups, etc. Most of them reduce to Riccati
equations (or iterations converging to the Riccati solution)
for the linear case in model (1), see (Lewis et al., 2012).

Policy improvement. The Q-function is a key step in the
so-called policy improvement step in the above algorithms.
Indeed, it can be proved that, given a suboptimal policy
π(xt) and its action-value function 1 Qπ(xt, ut) and a
policy improvement given by

ût := π̂(xt) := argmin
ut

Qπ(xt, ut), (9)

we have:

Qπ(xt,π̂(xt)) = r(xt,π̂(xt))+γQπ(xt+1,π(xt+1)) ≤ Qπ(xt, ut).

So, we have found an “improved” policy. Well-known
argumentations allow to assert, too, that V π̂(xt) :=

1 Actually in most cases, an approximation of it.

Qπ̂(xt, π̂(xt)) ≤ Qπ(xt, π̂(xt)) ≤ V π(xt) so such policy
π̂(xt) is preferable to the original one π(xt) actually at
every instant. Also, optimal policies are a fixed point of
Bellman if π̂(xt) = π(xt), then π̂(xt) = π∗(xt).

Linear discrete-time case. Let f(xt, ut) be:

xt+1 = Axt +But,

under a state feedback ut = π(xt) = −Kπxt. It can be
proved that the Q-function is quadratic:

Qπ(xt, ut) :=

[
xt

ut

]T[
Sπ
xx Sπ

xu
Sπ
ux Sπ

uu

][
xt

ut

]
= (10)

=

[
xt

ut

]T[
Hx + γATPπA γATPπB

γBTPπA γBTPπB +Hu

][
xt

ut

]
,

where Pπ is obtained from the Lyapunov equation associ-
ated to the feedback gain:

γ (A−BKπ)
T
Pπ (A−BKπ)−Pπ+Hx+(Kπ)

T
HuK

π = 0.

By applying ∂Qπ(xt,ut)
∂ut

= 0 to (10) we get ût in (9):

ût = − (Sπ
uu)

−1
Sπ
uxxt

as a basis for the policy improvement. If Pπ were the
optimal solution (Riccati equation with prescribed decay)

then Kπ = (Sπ
uu)

−1
Sπ
ux would be equal to the optimal

LQR gain.

Nonlinear case. In the nonlinear case, no explicit solution
for V π∗

(xt) and u∗
t can be found in general in (7) and

(8), only upper bounds (see later in this section), with
LMI techniques, unrelated to learning, and only in specific
cases. Hence, most of Q-learning approaches propose to
learn a specific parametrization of Qπ(xt, ut) using regres-
sors (Lewis et al., 2012), i.e.: using a linear parametriza-
tion:

Qπ(xt, ut) ≈ (ωπ)Tϕ(xt, ut) (11)

with ϕ(xt, ut) : X × U �→ Rm being a known set of
m regression functions and ωπ ∈ Rm×1 the weights to
be learned. The linear case is that in which ϕ(xt, ut) is
the vector with all the second order monomials of the
combined input-state vector:

ϕ(xt, ut) =

[(
{xt, ut}

2

)]

Policy evaluation with Temporal Difference. Given a pol-
icy π(xt) and a Q-function based on (11), and a series of
N data points collected from an experiment 2

D = {{x1, u1}, {x2, u2}, . . . , {xN , uN}}
the weights in Qπ(xt, ut) can be learned from data using
Temporal-Difference (TD) methods (Lewis et al., 2012;
Lewis and Vrabie, 2009; Busoniu et al., 2010) using equa-
tion (6):

(ωπ)T (ϕ(xt, ut)− γϕ(x̄t+1, π(x̄t+1)) = r(xt, ut)

where x̄t+1 = f(xt, ut). Indeed, R ∈ RN×1 is the in-
mediate rewards (computed from each data point) vector,
and matrices Φ ∈ RN×m and Φπ+ ∈ RN×m whose rows
2 Ideally D should cover the whole space X and U with a random
combined state-input.
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