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a  b  s  t  r  a  c  t

This paper  considers  the  isolation  problem  of  incipient  sensor  fault. Based  on  recursive  transformed
component  statistical  analysis  (RTCSA),  two different  isolation  methods  are  proposed.  The  first  method
is called  subspace  reconstruction,  where  elements  in  specific  subspaces  are  eliminated,  and  then  recon-
structed  by  minimizing  the  reconstructed  detection  index.  The  faulty  variable  is determined  by  the  least
scaled reconstructed  detection  index.  The  second  method  is  called  subblock  detection,  which  has  less
online  computational  complexity.  The  subblocks  of  the measurement  matrix  are  sequentially  selected
in each  sliding  window  to  calculate  the  subblock  detection  indices,  and  the  faulty  variable  is deter-
mined  by  the largest  subblock  detection  margin.  Compared  with  the existing  isolation  methods  such
as  reconstruction-based  contribution  (RBC)  and  its variant  termed  as  average  residual-difference  recon-
struction  contribution  plot  (ARdR-CP),  the  superior  isolation  performances  of the proposed  methods  are
illustrated  by  a numerical  example  as  well  as  a simulation  on  a continuous  stirred  tank  reactor.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

During the last two decades, data-driven process monitoring
has attracted considerable attention due to increasing demand for
safe and efficient operation of modern industrial processes [1–5].
As a main branch of data-driven process monitoring, multivari-
ate statistical process monitoring (MSPM) utilizes data correlation
information and multivariate statistical analysis techniques to
implement fault detection and isolation tasks. Its representative
methods, such as principal component analysis (PCA), partial least
square (PLS), and independent component analysis (ICA), have been
widely applied in various industrial processes [1,6].

In the framework for fault diagnosis, once a fault is detected, the
next step is to isolate it. Fault isolation aims to identify the possi-
ble root cause of the fault, in preparation for further operations to
correct the abnormal condition. For a sensor fault, the isolation is
required to locate the faulty variable. Over the past decade, many
isolation methods have been proposed [7–15]. Among numerous
methods, contribution plot [9,10] and reconstruction-based contri-
bution (RBC) [12,14,15] are two commonly used methods to isolate
fault, both of which are based on PCA. One advantage of these
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approaches is that neither a priori fault knowledge nor historical
fault data are required. However, contribution plot suffers from the
smearing effect, which may  lead to misdiagnosis [10,12]. Although
the RBC method does not eliminate the smearing effect, it can guar-
antee correct isolation in the case of single sensor fault with a large
magnitude [14].

In practical industrial processes, many abnormal conditions
gradually evolve from incipient faults [16,17]. In general, diag-
nosing incipient faults can effectively avoid abnormal conditions.
Since incipient faults usually have small magnitudes, it is more
difficult to detect and isolate them without a priori fault knowl-
edge. Recently, several approaches have been proposed to detect
incipient faults such as recursive transformed component statis-
tical analysis (RTCSA) [18]. With measurement vectors converted
to orthogonal transformed components (TCs), the statistical infor-
mation of the TCs in each sliding window is extracted for process
monitoring. The RTCSA approach in [18] is only involved in fault
detection but not isolation. In addition, several isolation approaches
designed for incipient faults have been proposed, such as signed
directed graph and qualitative trend analysis based framework
[19], moving window reconstruction based contribution (MWRBC)
[20], and average residual-difference reconstruction contribution
plot (ARdR-CP) [21].

In this paper, we extend the RTCSA scheme to the problem of
incipient sensor fault isolation. At present, only the single sensor
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fault is involved in this work. Based on the RTCSA, two isolation
methods, namely subspace reconstruction method and subblock
detection method, are proposed. For the subspace reconstruction
method, we sequentially construct the subspaces by selecting spe-
cific entries in each sliding window. The elements in subspaces
are eliminated, and then reconstructed with the objective of min-
imizing the reconstructed detection index. We  use the alternating
direction method of multipliers (ADMM)  to solve this nonconvex
optimization problem, since the ADMM is suitable for distributed
optimization and large-scale problems [22]. The faulty variable is
determined by the least scaled reconstructed detection index.

However, when �∞-norm is selected as the scalarization for
RTCSA-based detection, one update step of optimization algorithm
in subspace reconstruction method has no closed-form solutions,
leading to high computational complexity. Hence, in the case of
�∞-norm, we implement the subblock detection method to isolate
sensor fault. Specifically, we sequentially select the subblocks of the
sample covariance matrix in each sliding window, and the subblock
detection index is calculated using the eigenvalues of the sample
covariance matrix. For each sampling instant when the detection
index exceeds the control limit, the largest subblock detection mar-
gin is utilized to determine the faulty variable.

Compared to traditional reconstruction-based methods such as
RBC, the reconstruction index in subspace reconstruction method
is more complex and has higher computational cost. However, it
may  be more sensitive to incipient faults, which will be benefi-
cial for correctly isolating them. Although the subblock detection
method utilizes the detection index of the RTCSA, it implements
fault isolation from the perspective of detecting a subblock of mea-
surements. Simulation on a continuous stirred tank reactor (CSTR)
as well as a numerical example both illustrate the superior perfor-
mances of the proposed approaches, compared with the existing
fault isolation methods.

The remainder of this paper is organized as follows. Preliminar-
ies are given in Section 2. Section 2.1 gives an overview of the RTCSA
for incipient fault detection and Section 2.2 discusses the properties
of a sample covariance matrix. In Section 3, the proposed fault iso-
lation method based on subspace reconstruction is elaborated. The
subblock detection based fault isolation method is demonstrated
in Section 4. In Section 5, a numerical example and a CSTR simu-
lation are both used to examine the isolation performances of the
proposed methods. Conclusions are given in Section 6.

2. Preliminaries

2.1. RTCSA revisited

Denote the original measurements as X ∈ R
n×m, where n and

m represent the numbers of samples and measured variables,
respectively. The one-step w-width sliding window is used to stack
process measurements:

Xk =

⎡
⎢⎢⎢⎢⎣
xk−w+1,1 xk−w+1,2 · · · xk−w+1,m

xk−w+2,1 xk−w+2,2 · · · xk−w+2,m

...
...

. . .
...

xk,1 xk,2 · · · xk,m

⎤
⎥⎥⎥⎥⎦ . (1)

The original measurement data in each window are normal-
ized as X̄k = (Xk − 1�T

0)˙−1
0 , where �0 ∈ R

m denotes the reference
mean, and the diagonal matrix ˙0 ∈ R

m×m represents the ref-
erence standard deviation. The covariance matrix of X̄k can be

approximated as cov(X̄k) ≈ Ck = 1
w X̄

T
kX̄k. Ck = Pk�kP

T
k , where the

diagonal matrix �k ∈ R
m×m and Pk ∈ R

m×m represent the eigen-
values of Ck and the corresponding eigenvectors, respectively. The

eigenpairs can be recursively calculated by rank-one modification.
Then X̄k can be transformed into Tk = X̄kPk. Each column of Tk rep-
resents a corresponding TC. In each sliding window, statistics of T
can be represented by

�T =
[
�T | VT | � T] (2)

where �, V, and � denote the first-order statistics, second-order
statistics, and higher order statistics, respectively.

In brief, the detection index at the kth sampling instant can be
computed by

Dk =
∥∥ς−1(�k − �0)

∥∥
p

(3)

where �k ∈ R
sm denotes the statistics of the TCs in the kth

sliding window, �0 ∈ R
sm represents the reference means of �

trained from the historical dataset under normal conditions, s is
the type number of selected statistics, ‖·‖ p indicates the vector p-
norm, and the diagonal matrix ς = diag{ς1, . . .,  ςsm} denotes the
sample standard deviations of statistics of the TCs.

Specifically, if only the sample variances of the TCs are selected
as monitored statistics, the calculation of �k can be simplified
as computing the eigenvalues of Ck. For instance, if �∞-norm is
selected as the scalarization, (3) reduces to

Dk = max1≤j≤m

∣∣∣∣∣
�j,k − ��∗

j

ς�∗
j

∣∣∣∣∣ (4)

where �j,k denotes the jth largest eigenvalue of the sample
covariance matrix Ck, ��∗

j
and ς�∗

j
denote the sample mean and

sample standard deviation of �j under normal conditions, respec-
tively.

2.2. Sample covariance properties

Assume that the detectable fault will have an impact on the
measurement matrix, leading to deviations from normal condi-
tions. However, the magnitude of the incipient fault is usually small,
making it difficult to directly detect and isolate the fault even after
employing some moving average techniques, especially when fault
f has time-varying properties. In this subsection, we  mainly analyze
the effect of the sensor fault on the sample covariance matrix, which
is the basis of the covariance subspace reconstruction method dis-
cussed in Section 3.1 and the subblock detection method discussed
in Section 4.

Although the source of the fault is not necessarily known, the
impact of the fault on the measurement matrix can be restricted in
a subspace isolable from other faults [1]. Suppose the sample vector
is represented by

x = x∗ + �f (5)

where x∗ ∈ R
m denotes the fault-free portion of x, and � ∈ R

m

is the coefficient vector representing the weight that f allocates to
each variable. Note that f can change over time depending on its
actual evolution. In the case of single sensor fault, � reduces to one
column with nonzero values only on the faulty sensor.

Assume that f occurs at the lth variable xl. From (5), the scaled
data matrix X̄ in each sliding window can be calculated by

X̄ =
(
X∗ + f �

T
)
˙−1 (6)

where f ∈ R
w represents the fault vector in the w-width sliding

window, and  ̇ = diag{�x1 , . . .,  �xm }. Then the sample covariance
matrix of X̄  in each sliding window can be represented by

C = 1
w
˙−1

(
X∗TX∗ + �f TX∗ + X∗Tf �

T + �f Tf �
T
)
˙−1.
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