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a  b  s  t  r  a  c  t

Due  to  long  sampling  time  and  large  measurement  delay,  variables  such  as  melt  index,  concentrations  of
key components  in  the stream,  and  product  quality  variables  are  difficult  to  measure  online.  At  the  same
time,  routinely  recorded  variables  such  as  flow,  temperature  and  press  are  much  easier  to  measure.  As  a
result,  only  a  small  portion  of  data  has  values  for all variables,  while  other  large  parts  of  data  only  have
values  for  those  routinely  recorded  variables.  Focused  on  regression  modeling  between  those  two  types
of process  variables  with  imbalanced  sampling  values,  this  paper  develops  a  semisupervised  form  of the
Probabilistic  Partial  Least  Squares  (PPLS)  model.  In  this  model,  both  labeled  data  samples  (with  values
for both  two  types  of  variables)  and  unlabeled  data  samples  (with  values  only  for  routinely  recorded
variables)  can  be  effectively  used.  For  parameter  learning  of  the  semisupervised  PPLS  model,  an  efficient
Expectation-Maximization  algorithm  is  designed.  An  industrial  case  study is  provided  as an  example  for
soft sensor  application,  which  is  constructed  based  on  the  new  developed  model.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In the past years, with the wide use of the distributed control systems in modern industrial processes, a large amount of data have
been collected, which motivates use of various data-based methods for modeling, monitoring, and control. By mining and analyzing the
patterns and relationships among process data, useful information can be extracted, based on which statistical models can be developed
[1–4]. Those data models can be used for various applications, such as dimensionality reduction, data visualization, process monitoring,
fault diagnosis, and soft sensing/quality prediction [5–8].

Compared to the routinely recorded process variables such as temperature, pressure and flow, some key performance indices and quality
variables are much more difficult to be monitored and measured online, such as the melt index in the polypropylene production process,
the viscosity index in the rubber production process, or component concentrations in the product stream. Typically, these variables are
often obtained through expensive analyzers or lab analyses, both of which may  introduce a significant time delay to the quality control
system. In contrast, by building a regression model between some easy-to-measure process variables and those key indices, data-based
soft sensors can provide continuous estimations for those important variables, which have become more and more popular in recent years.

To date, various data-based soft sensor modeling methods have been developed, including latent variable models such as principal
component regression (PCR) and partial least squares (PLS) [9–13], artificial neural networks (ANN) and kernel-based models [14–17],
and probabilistic and Bayesian methods [18]. Practically, the probabilistic soft sensor modeling method provides a natural mechanism for
describing relationships among stochastic process variables, with considerations of both measurement and model uncertainties. Compared
to deterministic modeling approaches, several additional advantages can be found by using the probabilistic modeling method [19]. First,
most probabilistic models are based on Bayes’ rule and can be trained through the expectation maximization (EM) learning mechanism.
While Bayes’ rule provides as the cornerstone for probabilistic inference, the EM algorithm provides an effective learning framework for
most probabilistic models. Second, the problem of missing data and outliers which are quite common in practice can be solved straightfor-
wardly under the probabilistic modeling framework. Third, the flexible probabilistic subspace can be easily generalized to mixture models,
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which can be used to deal with more complicated process data modeling problems. For the soft sensing purpose in industrial processes,
several probabilistic data models have already been introduced, including probabilistic PCR [20], supervised latent factor analysis [21],
relevant vector machine [22], Gaussian process regression [23], and so on [24–27]. More recently, the widely used PLS model has also been
extended to the probabilistic form for soft sensing [28].

For a typical soft sensor model development, a fully labeled training dataset is needed, which means each sample in the training dataset
should has input and output measurements for the soft sensor. However, while the routinely recorded input data such as temperature,
pressure, and flowrate are easy to be measured and obtained, the output data of the soft sensor which correspond to key performance
indices or product quality variables are usually difficult to obtain. As a result, we may  only have a small number of labeled data samples
for soft sensor modeling, and hold a large number of unlabeled data samples which lack of measurements for key process variables.
This is actually a semisupervised learning problem from the viewpoint of machine learning [29]. Although the unlabeled dataset has no
output values, it may  contain important process information, based on which the estimation of the distribution of input variables could be
significantly improved. In the past years, several semisupervised learning methods have already been introduced for process monitoring
and soft sensor applications [30–34].

Under the probabilistic PLS model structure, the motivation of the present paper is to incorporate both labeled and unlabeled datasets
for soft sensor modeling. In contrast to the basic probabilistic PLS model, the new model which incorporates both labeled and unlabeled
datasets is termed as semisupervised probabilistic PLS model. For parameter learning of the semisupervised PPLS model, an efficient
Expectation-Maximization algorithm is designed. Unlike the basic PPLS model, the new method has two  modeling items for both labeled
and unlabeled datasets, which is actually a combination of unsupervised probabilistic model and supervised probabilistic model. The model
structure and parameter learning process are similar to those of the probabilistic PLS model.

2. Probabilistic PLS model (PPLS)

The main idea of the probabilistic PLS model is to use a part of latent variables of x to explain y, and keep the rest of the latent variables
to explain its own information. Here is the generative model structure of probabilistic PLS [28]

x = �x + Pts + Qtb + ex (1)

y = �y + Cts + ey (2)

where P ∈ Rm×qs , C ∈ Rr×qs and Q ∈ Rm×qb are loading matrices, ts ∈ Rqs×1 is the latent variable vector that used to explain the information
of y, tb ∈ Rqb×1 is the rest of the latent variable vector that used to explain x, �xand �y are mean vectors of x and y, ex ∈ Rm×1 and ey ∈ Rr×1

are measurement noise of x and y.
In this model, it is assumed that both probability density functions of the latent variable and the measurement noise are Gaussian, thus

p(ts) = N(0, I), p(tb) = N(0, I), p(ex) = N(0, ˙x), and p(ey) = N(0, ˙y). Here, heterogeneous noise variances have been assumed for both x and
y, thus ˙x = diag{�2

x,u}u=1,2,···,m and ˙y = diag{�2
y,v}v=1,2,···,r . Given datasets X = [x1, x2, · · · , xn]T ∈ Rn×m and Y = [y1, y2, · · · , yn]T ∈ Rn×r, the

parameter set of the probabilistic PLS model � = {�x, �y, P, Q, C, ˙x, ˙y} can be determined by maximizing the following log-likelihood
function

L(X, Y|�x, �y, P, Q, C, ˙x, ˙y) = ln
n∏
i=1

p(xi, yi|�x, �y, P, Q, C, ˙x, ˙y) (3)

which can be efficiently handled through the Expectation-Maximization algorithm. It is a fast numerical calculation method. Instead of
maximizing the log-likelihood function directly, the EM algorithm tries to maximize the expected complete-data log-likelihood function,
including the observed variables x, y and the latent variables ts, tb. The value of expected complete-data log-likelihood function of the
dataset with respect to the latent variables can be calculated as follows [28]

E[L(X, Y, �)] =
n∑
i=1
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Based on the formulation of the expected complete-data log-likelihood function, the EM algorithm can be iteratively carried out through
two main steps: the Expectation-step (E-step) and the Maximization-step (M-step). It has been proved that the EM algorithm can guarantee
the log likelihood value never decreases when this algorithm is carried out iteratively [35]. As a result, the optimal value of the parameter
set � = {�x, �y, P, Q, C, ˙x, ˙y} can be determined as soon as the EM algorithm converges. The main drawback of the EM algorithm is that
it may  get a local optimal value, for improvement, several different initialized values are suggested to train the model. Another limitation
of this method is due to the Gaussian assumption of the latent variable and measurement noise. However, if the non-Gaussian distribution
is assumed, the probabilistic PLS model structure cannot be determined, since the distribution forms of non-Gaussian variables are quite
different from each other. Besides, the model training will become much more difficult, which is out the scope of the current work.
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