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a  b  s  t  r  a  c  t

This  paper  presents  a heuristic  algorithm  to  implement  a  model  predictive  controller  for  systems  with
binary  inputs  in which  the  effect  of the  control  signal  on  the  response  partially  vanishes  before  reach-
ing  steady  state,  for example  systems  that  exhibit  both  fast  and  slow  stable  dynamics.  The  proposed
algorithm  is  based  on  an  iterative  procedure  that  constructs  a  reduced  set  of  suboptimal  solutions.  The
size of  this  set can  be  set  accordingly  to  the  computing  capabilities  and  the  sample  time.  The  iterative
procedure  rejects  possible  solutions  profiting  from  the  partial  fading  memory  property  of  the system
and  an  approximation  of  the optimal  cost-to-go  function.  The  properties  of  the  proposed  controller  are
illustrated  with  a simulated  example  of a  photobioreactor.
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1. Introduction

Model predictive control (MPC) [7] is one of the most successful
forms of feedback control due to its ability to control almost any
kind of process while considering operating constraints explicitly.
The theoretical bases have been well established for both linear
and nonlinear systems [17] and, in many cases, a real time imple-
mentation is not a problem. These are some of the reasons that
explain why MPC  is more spread in the industry than any other
form of modern control. There are, however, cases in which the
real time application can be difficult due to the computational bur-
den associated with the computation of the control law, specially
when the model is based on a mix  of integer and real variables [8,3].
A particular case of this scenario will be considered in this paper.

The control action considered in most MPC  strategies can take
any value from a prescribed range. However, there are systems in
which the control action is just a binary value. This is the case
when an on–off actuator is used. Such actuators appear in the
form of on–off valves, pulse width modulation switches, power
electronic devices or thrusters in spacecrafts, to name a few exam-
ples. Having the control action restricted to a set of discrete values
makes the optimization problem associated to MPC  much harder
to solve. Instead of a relatively benign quadratic or linear program-
ming problem, a much more complex mixed integer programming
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problem must be solved in real time each sampling interval. Thus,
efficient optimization algorithms are very important in these cases.

In order to solve a binary optimization problem it is necessary
in general, to compute all the possible combinations of the control
actions along the prediction horizon and select the one with the
lowest cost. As the number of combinations grows exponentially
with the length of the prediction horizon, this can only be done if the
prediction horizon is small as in Sprock and Hsu [21], Ghanes et al.
[12], where MPC  of switched power electronics is considered. When
the prediction horizon is large, the number of candidate solutions
must be reduced by some strategy [22].

In Causa et al. [9] two  different approaches based on branch and
bound techniques and genetic algorithms were applied to the con-
trol of a batch reactor with on–off valves. Genetic algorithms have
also been used by Schmitz et al. [20] for the control of the aera-
tion in a waste water treatment plant with the goal of lowering
the operating costs. Pawlowski et al. [16] and Berenguel et al. [4]
used branch and bound algorithms together with an event driven
sampling mechanism to apply an MPC  strategy to the control of pH
in photobioreactors. Attitude control of a spacecraft using on–off
thrusters with linear parameter varying models and branch and
bound techniques has been considered in Asakawa and Kida [2].
The solution of the MIQP problem using methods not based on
branch and bound has also been considered in the context of opti-
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mal  control problems of systems with discrete inputs. Sager et al.
[19] used, in the optimal control of a subway train with discrete
gears, a convexification on the control inputs and a relaxation of
the MIQP problem in a proposed strategy based on the direct mul-
tiple shooting method [5]. Finally in some rare cases, the optimal
control policy can be identified a priori and online optimization can
be avoided [18].

This paper presents a heuristic algorithm to obtain a subopti-
mal  solution of the MPC  optimization problem for processes with
binary inputs in which a part of the dynamics is not influenced
by past values of the control signal beyond a certain time instant.
We denote this class of systems as partial fading memory systems
(PFMS). The algorithm constructs iteratively a series of sets of can-
didate solutions that are likely to contain the optimal solution, in
a similar way to the L-Band algorithm [1,11], profiting from the
partial fading memory property of the system and an approxima-
tion of the optimal cost-to-go function. The size of this set provides
a trade-off between optimality and computational burden. These
properties are illustrated by means of a simulated example.

The paper is organized as follows: the problem formulation is
presented in Section 2. The main contributions of the paper are pre-
sented in Section 3. An example of application is shown is Section
4. The paper ends with the conclusions in Section 5.

2. Problem formulation

The system considered throughout the paper will be repre-
sented by a discrete-time linear model:

x(t + 1) = Ax(t) + Bu(t) (1)

where x(t) ∈ R
nx is the state of the process, u(t) ∈ {0, 1} is the

binary control input, t is discrete valued, A ∈ R
nx×nx is the state

transition matrix and B ∈ R
nx is the input matrix.

Definition 1 (Partially fading memory system). A system is said to
be a partially fading memory system if for any given state sequences
xa(t), xb(t) with different initial states but driven by the same input
sequence, the following holds:

‖xa(t) − xb(t)‖ ≤ ‖Cs(xa(t) − xb(t))‖ + �tf ‖Cf (xa(0) − xb(0))‖, ∀t ≥ L

where L ∈ N  is the fading time of the fast dynam-
ics, �f ∈ [0, 1) is the fading parameter such that �L

f
�

1 and Cs and Cf are projection matrices that satisfy
‖xa(t) − xb(t) ‖ ≤ ‖ Cs(xa(t) − xb(t)) ‖ + ‖ Cf(xa(t) − xb(t)) ‖ ∀ t, where
‖·‖ is a given vector norm.

This definition implies that part of the state x(t) for time instant
t is only barely influenced by past values of u(t) beyond t − L (i.e,
u(t − L), u(t − L − 1), . . .).  This can be seen as the fast dynamics part
of the state, denoted as zf(t) so that

zf (t) = Cf x(t).

On the other hand, the remaining part of the state is influenced
by past values of u(t) beyond u(t − L). This part of the state vector,
the slow dynamics of system (1), will be denoted as zs(t), so that

zs(t) = Csx(t).

Systems that combine stable and integrating dynamics and sys-
tems with both fast and slow stable dynamics are examples of
PFMS.

Assumption 1. System (1) is a partially fading memory system
(PFMS).

Assuming that (1) is a partial fading memory system, it is pos-
sible to partition the eigenvalues of matrix A in two  sets, �s and �f
related to slow and fast dynamics respectively, such that

min
� ∈ �s

|�| > max
� ∈ �f

|�| = �f . (2)

Since all the eigenvalues in �s are different from the ones in �f,
there exists a matrix T such that

A = T

[
Hs 0

0  Hf

]
T−1 (3)

where Hs, Hf are Jordan blocks that represent the slow and fast
dynamics of the system respectively. That is, the eigenvalues of Hs

and Hf are contained in �s and �f respectively. The slow and fast
projections, denoted zs and zf, are obtained from

z =
[
zs

zf

]
= T−1x (4)

where z ∈ Z ⊂ R
nx . The following property shows that if �f < 1, then

system (1) satisfies Assumption 1. Moreover, the proof that we
present for this property provides a procedure to obtain matrices
Cs and Cf.

Property 1 (Fading parameter in linear systems). Suppose that the
eigenvalues of matrix A are partitioned in two set as in (2) with
�f < 1, then system (1) is a partially fading memory system with fading
parameter �f.

Proof. Suppose that the same first control input u(0) is applied to
different initial conditions xa(0), xb(0). We  have,

xa(1) − xb(1) = Axa(0) + Bu(0) − Axb(0) − Bu(0)

= A(xa(0) − xb(0)).

From (3) we obtain

xa(1) − xb(1) = T

[
Hs 0

0 Hf

]
T−1(xa(0) − xb(0))

T−1(xa(1) − xb(1)) =
[
Hs 0

0 Hf

]
T−1(xa(0) − xb(0)),

and taking into account (4)

za(1) − zb(1) =
[
Hs 0

0 Hf

]
(za(0) − zb(0)).

Proceeding in a recursive way, we obtain that if the same control
sequence is applied to both projected initial conditions

za(t) − zb(t) =
[
Hts 0

0 Ht
f

]
(za(0) − zb(0)). (5)

There are two possible cases depending on whether the max-
imum singular value of matrix Hf, denoted as �̄(Hf ), is equal or
greater than the fading parameter.

(a) �̄(Hf ) = �f .
This is the most general case and occurs, for example, when the

eigenvalues of Hf are different.
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