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a  b  s  t  r  a  c  t

Overlay  variations  occur  frequently  in  lithography  process,  which  should  be controlled  within  the  toler-
ance to  guarantee  the  better  pattern  resolutions.  The  operational  optimization  of overlay  aims  to  predict
the  unknown  overlay  variations  and  compensate  them  into  the wafer  production.  Due  to  the  uncer-
tain  yield,  the  overlay  data  for  learning  are  usually  incomplete,  which  makes  the  overlay  optimization
very  challenging.  This  paper  proposes  a novel  overlay  optimization  framework  called  low-rank  mani-
fold  optimization  (LRMO),  which  provides  new  insight  to  address  incomplete  overlay  data  via exploiting
low-rank  property.  First, LRMO  can use effectively  the  correlations  from  incomplete  overlay  data,  which
builds  a low-rank  model  for  overlay  optimization.  In  addition,  LRMO  resorts  to  Riemannian  optimization
and  designs  an efficient  algorithm  for this  low-rank  model.  The  proposed  LRMO  algorithm  analyzes  the
manifold  structure  of  the overlay  data  and computes  accurate  overlay  variations  with  a  low  computa-
tional  complexity.  The  experiments  validate  that  LRMO  obtains  satisfying  performance  on the  operational
optimization  of  overlay  variations.

© 2017  Published  by  Elsevier  Ltd.

1. Introduction

Lithography is an important and complex process for wafer pro-
duction in semiconductor manufacturing [1–5]. Fig. 1 shows the
lithography process that contains mainly two  main steps. First, a
pattern is created on the mask. Second, the light source passes
through the lens repeatedly, which projects the pattern onto cur-
rent layer of wafer. However, stepper errors and lens distortion may
cause the misalignments between a current layer and a previous
layer, known as overlay variations. Fig. 2 show eight overlay vari-
ations frequently considered in lithography, including horizontal
translation,  vertical translation,  horizontal expansion,  vertical expan-
sion, rotation, orthogonality,  shot expansion and shot rotation. These
overlay variations must be accurately predicted and compensated
into lithography process. Otherwise, the improper overlay varia-
tion will lead to the poor pattern resolutions and affect the wafer
production.

Traditional overlay optimization approaches apply the regres-
sion model to approximate the unknown overlay variations based
on collected sampling points. A multiple linear regression method is
introduced in [6], which can solve a high-order overlay equation for
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assessing the unknown overlay variations. Subsequently, weighted
least-squares regression considers the extra weights determined by
the quality of sampling points [7]. Another weighted least-squares
regression integrates high-order variables into linear overlay equa-
tion for improving performance [8,9]. In general, the effectiveness
of these methods depends on the number of sampling points in a
single wafer, and more sampling points will produce the more accu-
rate overlay results [6]. However, a single wafer contains typically
very limited points owing to sampling costs [10]. Thus, this implies
that these methods may  not have sufficient sampling points to get
a good estimate of overlay variations.

To overcome aforementioned drawbacks, advanced process
control (APC) performs batch-process control for improving pro-
cess and device performance. Early APC methods [11–13] are
generally implemented through exponentially weighted moving
average (EWMA) based algorithms because of its simplicity and
easy maintenance. Threaded run-to-run (R2R) [14–17] are the new
paradigm of manufacturing with the goal of satisfying high-mix
production environments. Threaded R2R divides historical data
into different threads according to manufacturing contexts or char-
acteristics, which reduces the sources of variation for one thread
significantly. In particular, product-based EWMA  (pb-EWMA) [5]
and Group product-based EWMA  (GP-EWMA) [16] are state-of-
the art approaches improving the process performance. The idea
of pb-EWMA was  that it took an action based on the data from
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Fig. 1. Lithography process.

Fig. 2. Eight overlay variations of one wafer.

Table 1
Summary of overlay variations.

Overlay variations Meaning

Horizontal translation Translation degree on wafer in the directions
of left/right

Vertical translation Translation degree on a wafer in the directions
of up/down

Horizontal expansion Expansion degree on a wafer in the directions
of left/right

Vertical expansion Expansion degree on a wafer in the directions
of up/down

Orthogonality Orthogonal degree on a wafer with respect to
the base axes

Rotation Rotation degree on a wafer with respect to the
base axes

Shot expansion Expansion degree for the shots
Shot rotation Rotation degree for the shots

the same product, ignoring the difference between tools. By using
group products with similar characteristics, GP-EWMA adopts an
adaptive k-means cluster algorithm to guarantee the quality of low-
frequency products. However, the division of products by thread
R2R depends on the frequency of products, which may  fail to find
the optimum weight and degrade the performance [18].

and Table 1
Alternatively, recent research resorts to train a model from

multiple history wafers of production procedures. Neural net-
work model [19] is employed to characterize the internal process
dynamics and estimate the overlay variations based on history
data analysis. Fusion method [20] utilizes a mixed training set
with equipment parameters and overlay data to build a neural
network model for predicting overlay variations. Virtual method
[21,22] is presented to train an approximation function to improve
the overlay optimization based on context information and sen-
sor data. Pattern recognition technique [23] combines the available

fingerprints with history overlay data for further improvements. In
general, most of these methods must collect the overlay data of the
k historical wafers as the training samples (i.e., k = 3 in [19]), where
the history wafer means wafers with the same type. However, very
often the collected sample comes with block-wise missing entries;
for example, one sample may  only have 2 or 1 history wafers that
are less than k, making the overall data incomplete. In this case,
samples with missing entries are discarded, resulting in a severe
loss of available information. Moreover, it is known that there exist
inherent correlations among multiple historical wafers, since they
are produced by the same machine and belong to the same wafer
type. In contrast, most existing training methods focus on training
multiple historical wafers separately and thus cannot utilize the
intrinsic useful correlation information. Identifying the correlation
may contribute to performance improvements of overlay. There-
fore, how to effectively exploit overlay data and construct a robust
and accurate overlay model remains largely unexplored.

This paper aims to address these limitations by developing a
novel framework termed low-rank manifold optimization (LRMO),
which can obtain accurate overlay variations from incomplete and
correlated overlay data effectively. The details of the proposed
framework are described in Fig. 3. Our main contributions can be
summarized as follows:

• By exploiting the underlying correlation nature of the overlay
data, optimizing overlay variation can be formulated as a low-
rank model. Since the overlay samples with the same wafer type
are produced by the same machine, which thus promotes the
underlying correlations and similarities among overlay variations
with low-rank structure.

• Wafers usually contain incomplete overlay data during the lithog-
raphy process. The proposed low-rank model can make full use of
all incomplete overlay data that are usually discarded by existing
overlay methods. The low-rank model can estimate the incom-
plete overlay data, which avoid to lose useful overlay information
and can offer superior performance for overlay optimization.

• To solve this low-rank model, we design a Riemannian optimiza-
tion algorithm over manifold to obtain optimal overlay variations.
Particularly, the proposed algorithm exploits smooth geometries
over the low-rank manifold and utilizes Riemannian gradient
strategy for overlay optimization. This allows for computing accu-
rate overlay variations with a lower complexity.

The remainder of the paper is organized as follows: Section 2
analyzes the challenges for overlay optimization. Section 3 gives
the low-rank model and Section 4 presents low-rank algorithm
for overlay optimization. Section 5 discusses how to compensate
the results of our approach into the lithography process. Section
6 implements extensive experiments to verify the performance of
our framework. Finally, we conclude the paper in Section 7.

2. Challenges

The goal of overlay optimization is to predict the unknown
overlay variations and compensate them into the wafer produc-
tion. Overlay variations refer to the displacement variations of an
exposed layer relative to the previous exposed layer, which are
caused mainly by stepper [8]. In this paper, we considered the fol-
lowing eight overlay variations as shown in Table 1. These eight
overlay variations of a wafer can be formulated as the following
vector form

[Th, Tv, Eh, Ev, R, O, Se, Sr] (1)
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