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a  b  s  t  r  a  c  t

We  propose  a new  nonparametric  approach  for  multi-process  data  analysis,  in  which  each  of  the process
is modeled  as  a combination  of a  fixed-effect  and  a  random-effect  Gaussian  process  (GP)  regression
model,  namely,  a mixed-effect  Gaussian  process  (ME-GP)  model.  The  ME-GP  approach  provides  a  flexible
means  to combine  the common  aspects  of  all processes  and  describe  the  heterogeneity  among  different
processes.  In  particular,  we  model  the  mean  and  covariance  structures  of both  the  fixed-  and  random-
effects  simultaneously,  and  predict  a future  input  using  probability  density  distributions.  We apply  the
ME-GP  model  to predict  the  melt-flow-length  for filling  of  different  molds  in  injection  molding  processes.
It  is shown  that  the  ME-GP  model  obtains  an improved  performance  against  GP  model  only.
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1. Introduction

In many engineering problems we are not only interested
in modeling one process but also multiple processes that share
common information [1–4]. When different processes are closely
related one can model all processes simultaneously and try to attain
improved predictive performance by taking advantage of the com-
mon  aspects of all processes involved. Often, multi-process data
from similar processes are present. Consequently, it is desirable to

∗ Corresponding authors.
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develop a new model for the associated similar, yet nonidentical
process using the available multi-process data.

Take a real-world injection molding process for example. Injec-
tion molding is an important polymer processing technique that
transforms thermoplastic into various shapes and types of products
[5]. As a cyclic process, injection molding consists of three stages:
filling, packing-holding and cooling. The motivated example con-
cerns data collected during the filling stage, in which an injection
screw moves forward and pushes the polymer melt into the mold
cavity. Melt development in the cavity during filling plays a key
role in determining the quality of the product. The output of this
stage is the trajectory of the melt-flow-length (MFL), represented
as the distance that the melt-front has traveled inside the mold

https://doi.org/10.1016/j.jprocont.2017.12.003
0959-1524/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jprocont.2017.12.003
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2017.12.003&domain=pdf
mailto:llk1896@gmail.com
mailto:kefgao@ust.hk
https://doi.org/10.1016/j.jprocont.2017.12.003


38 L. Luo et al. / Journal of Process Control 62 (2018) 37–43

Fig. 1. Illustration of melt flow during filling stage.

Fig. 2. Ten curves of melt flow length (y-axis, normalized value) against time (x-axis,
in seconds). Each curve corresponds to one insert mold.

from the gate; Fig. 1 shows a simplified diagram of the melt flow
in a single-gate rectangular mold. MFL  is an important parameter
reflecting the melt-flow status in the mold cavity; in turn, under-
standing its dynamic behavior helps us to achieve the perfect filling
of the mold, which is always desired in injection molding applica-
tions. In reality, it is very difficult to measure the MFL  on-line unless
some expensive sensor is used and set up in the equipment. Hence,
one of the objectives of the investigation is to develop a data-based
model for reconstructing the trajectory of MFL  by using some easily
measured quantities, such as the screw displacement, the injection
velocity, the nozzle temperature, etc. Previous studies show that
eight such input variables are observed having significant impacts
on the trajectory [6–8]. Let y(t) denote the trajectory at time t. The
goal is to develop a relationship f to model y(t) with respect to d
input variables x(t) = (x1(t), . . .,  xd(t))T :

y(t) = f (x1(t), . . .,  xd(t)) + �(t), (1)

where �(·) denotes random measurement errors.
In real-world industry, the insert molds are often changed in the

injection molding machines, in order to produce various shapes and
types of products. Fig. 2 depicts ten curves of MFL  trajectory when
using ten different but basically similar designed molds; for details
see Section 3. For each mold used, both the output variable y(t) and
the input variables

{
x1(t), . . .,  xd(t)

}
are measured until the mold

is completely filled by the polymer melt. We  refer to ym(t) the curve
when using mth mold (m = 1, . . .,  10).

A quick glance at Fig. 2 shows that the curves of the trajectory
behave in a much similar manner. For instance, the melt-flow-
length begins to grow after nearly the same time point, because the
velocity settings are identical for each process and that the required
time for the polymer melt to reach the gate shall also be identical.
Additionally, the curves are monotonically increasing with respect

to time immediately after the polymer melt begins to fill the mold.
These findings reveal that the underlying process is similar regard-
less the change of mold, and that the curves thereby share similar
trend. In this context, common information can be shared, or tied,
among all processes that correspond to different molds, such as
having similar trajectory.

The objective of this paper is to combine data across multi-
ple processes when a rich source of process data are available,
and aims to improve the model accuracy of a single process by
taking advantage of all available multi-process data from similar
processes. The main idea is that the measurements taken on one
process may be informative with respect to the others. In this paper,
we try to explore functions to simultaneously model the trend that
is common to all processes and the trend that is unique to the indi-
vidual process. To be specific, we focus on functional mixed-effect
model, where each mth process is modeled as a sum of a fixed effect
shared by all processes and a random effect that is interpreted as
the specific deviation from the fixed term:

ym(t) = f̄ (x) + f̃ m (x) + �(t), (2)

where f̄ is the fixed term, and {f̃ m} is a set of random terms. Eq.
(2) is called mixed-effects model in literature [9,10]. The choice
of fixed and random terms plays an essential role in fitting the
mixed-effects model. A commonly used method is to employ lin-
ear regression function, known as linear mixed-effects model; see,
[11–13], for example. Such methods, however, may  not posses
sufficient flexibility to model nonlinear systems. To overcome
limitation of linear mixed-effects model, mixed-effects Gaussian
processes (GP) model, wherein both the fixed and random terms
are assumed to be realizations of Gaussian processes, is proposed
[14]. GP has been proven to be a powerful tool to model a variety
of complex physical processes that frequently occur in engineering
applications [15–17], and is shown to have capability of account-
ing for the dependency between the linear fixed effect term and the
response. Furthermore, the use of GP avoids the trivial treatment of
choices of both fixed and random terms, and hence is more flexible
than the other methods. Throughout this paper, we will define the
proposed model (2) as mixed-effects Gaussian processes (ME-GP)
model. Related work can be found in [18–21] and the references
therein.

Our main contributions are twofold. (1) We  model the multi-
subject data with nonparametric fixed- and random-effect models.
In [19], for example, the fixed- and random-effects models are lin-
ear regression; while in [20], the authors proposed multi-tasks
learning algorithm, without modeling the fixed- and random-
effects separately. (2) We  apply the mixed-effects models in the
discipline of process system engineering, while most of related
work was  in the domain of physical, biological and social sciences.

There is other work that relates to multi-process modeling. In
[22] a migration method under certain assumption was presented.
The author employed ensemble learning to develop the target
model by averaging the other models. In [23], a scale-bias correc-
tion methodology to transfer one model to another was  proposed.
However, the scale and bias are both constant parameters, which
cannot express the model nonlinearity. Then, in [24] the author
extended the method by adopting Gaussian process function to
approximate the scale and bias terms. These methods, however,
heavily reply on the performance of the models, or worse, the error
in models may  be exaggerated. Moreover, they are two-stage mod-
eling strategies, in which the models are first built and then, another
similar model is developed by transferring/averaging the available
models. The ME-GP technique, however, models the multiple pro-
cesses simultaneously, but learns the common and unique parts
separately. This, in turn, can obviously decrease error exaggeration
during multi-process modeling.
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