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a  b  s  t  r  a  c  t

In this  paper,  an  interval  sliding  mode  observer  design  method  for  uncertain  systems  is proposed.
Uncertainty  is  assumed  between  a known  minimum  value  and  a maximum  value.  The  observer  is then
constructed  via  a convex  weighted  sum  of an  upper  estimator  corresponding  to  the  maximum  value
of  the uncertainty  and  a lower  estimator  corresponding  to  the  minimum  value  of the  uncertainty.  The
weighting  factor  is  calculated  at each  time,  from  the  different  measured  outputs  and  the  bounds  of the
interval  of  the estimator.
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1. Introduction

The design of an effective control strategy often requires knowl-
edge of the state variables of the dynamic system. However,
the state variables rarely not accessible to measurement. The
state observers developed several decades ago by Luenberger and
Kalman are enable to reconstruct the state of the model if the
parameters supplied are well known for linear systems [1]. On
the other hand, for nonlinear systems, there exist several kinds
of observers to be used depending on the mathematical structure
of the process model and the available information. For example,
we have the extended Kalman filter [2], the high gain observer
[3] and the sliding mode observer [4]. All these approaches are
more or less robust with respect to the disturbances and the
measurement noise. However, they often provide unsatisfactory
estimations in the presence of uncertainties in model parameters
[5]. These uncertainties can be serious limitations in the applica-
tion of these observers which provide biased estimates. In most
cases, there is partial information on uncertainties, including that
giving the maximum and minimum limits. It would be interesting
to take advantage of this partial information to implement a robust
observer [6].

To overcome this kind of problems, several methods have been
developed recently in the set membership framework. Their prin-
ciple consists in computing sets guaranteed to contain all the state
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vectors even in presence of uncertainties. These approaches are
based on the analysis of uncertain systems, themselves based on
special geometrical forms, such as ellipsoids [7], zonotopes [8], and
interval vectors [9,10].

The technique based on the interval arithmetic introduced by
Moore [11] is an interesting alternative for the design of observers
for the systems subject to partially unknown uncertainties. Cur-
rently, there is a large number of works devoted to the problem of
state estimation and parameters using interval analysis [12–14].

Interval observers are highly relevant in the context of obser-
vation of systems for which only a poor model is available, like
in fields of ecology, epidemiology or biology; see, e.g. [15]. Interval
observers have been already considered for systems with unknown
inputs [16], linear systems [17,18], uncertain systems [19–21],
time-varying systems [22], delay systems [23,24], nonlinear sys-
tems [25], linear parameter varying systems [26], discrete-time
systems [27], and for stabilization [28].

Besides, the sliding mode techniques have become very pop-
ular for the design of observers for linear and nonlinear systems
[29–32]. The sliding modes ensure a finite time of the estimation
error convergence to zero and complete insensitivity to a matched
uncertainty [33–35]. The objective of this work is to combine both
approaches, i.e. the interval observers and the sliding mode tech-
niques, in order to improve the accuracy of estimation achieved by
interval observers. This combination leads to a significant decrease
of the interval estimation conservatism.

In spite of the results already available in the literature, much
remains to be done to complete the theory of interval observers.
In [6], the authors propose a weighted average observer obtained
by a weighted convex sum of the upper and lower estimators. This
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estimator is based on the Luenberger observer. The Luenberger esti-
mator is calculated as a weighted value between the min  and the
max observers. The weighting factor is calculated from measured
output and the bound of the interval of the estimator.

Nowadays and to our knowledge, few studies have been made
to design interval sliding mode observers; see, e.g. [36,37]. Our con-
tribution is to design an interval sliding mode observer for linear
and nonlinear dynamic systems. This observer is calculated as a
weighted average of the upper and the lower sliding mode esti-
mator. The interval observer consists in two estimators, an upper
estimator and a lower estimator. The drawback of the interval
observer is that it provides an estimated interval rather than a
unique estimated value.

Various applications of interval analysis in the literature include
the treatment of uncertainty in the optimal design of chemical
and biological plants. Proper control of biological and chemical
systems strongly depends on reliable input information, which
is usually obtained from fast and simple measurements or esti-
mated from mathematical structures called observers. Uncertainty
is a central concept when dealing with biological and chemical
systems because they are inherently subject to large natural varia-
tions. Uncertainty is recognized as an important part of the analysis
of control strategies for biological and chemical systems [38–40].
Input data uncertainties have also been recognized as a key prob-
lem in accurate modeling [41]. In the literature, a large number of
works on the computation of interval observers for uncertain sys-
tems takes into account the uncertainties on control inputs, as well
as on the dynamics of the system [42–44]. With increasing com-
plexity of models, it also becomes important to analyze the model
parameter sensitivity while taking into account uncertainties in the
input and calibration data. In this work, we develop a framework
for the quantification of the impact of uncertainties in the model
inputs.

This paper is organized as follows. Section 2 presents the
weighted average of the interval sliding mode observer for a class
of linear systems. Section 3 presents a generalization to nonlinear
systems. To illustrate the derived results, numerical examples are
given in Section 4. Finally, Section 5 gives conclusions and some
perspectives of the present work.

2. Notations and definitions

In this paper, the following notations and definitions will be
used.

• �n×m is the set of real matrices with n lines and m columns.
• In ∈ �n×n denotes the identity matrix.
• R  denotes the set of real number.
• R+ denotes the positive set of real number.
• ‖x‖ =

√∑
xi

2 is the Euclidian norm of x ∈ R
n.

Definition 1. A real matrix M ∈ �n×m is called a Metzler matrix
(or cooperative) if all its off-diagonal entries are nonnegative, i.e.
Mij ≥ 0, i /= j. Mij denotes the (i, j) element.

We  now give the definition of cooperative dynamical systems.
Consider the following nonlinear dynamic system defined in the
open subset D  of R

n{
ẋ(t) = f (x(t), t)

x(t0) = x0
(1)

where x(t) ∈ D  ⊂ R
n is the n-dimensional state vector, t ∈ R+

denotes the time and t0 the initial time. The vector field f : D  ×
R+ → R

n is assumed to be sufficiently differentiable with respect
to x ∈ D.

Definition 2. System (1) is said to be cooperative in D  ⊂ R
n if the

differentiable vector field f : D  × R+ → R
n is such that the Jacobian

matrix ∂f (x,t)
∂x

is Metzler for all x ∈ D  and for all t ≥ t0. Consequently
the following linear time-invariant system

ẋ(t) = Ax(t)

is cooperative if the state matrix A is Metzler.
In the rest of the paper we consider D  ≡ R

n.

Lemma  1. [45,46]

sign(a + b) ≤ sign(a) + sign(b) + 1 for all a and b. with a ∈ R  and
b ∈ R.

Property 1. The comparison principle ([47,48])

Let two cooperative systems be{
ẋ(t) = f (x(t), t), x ∈ R

n

˙̃x(t) = f̃ (x(t), t), x̃ ∈ R
n

(2)

with the initials conditions xi(t0) = x0i and x̃i(t0) = x̃0i, i = 1, 2, . . .,  n
respectively, which satisfy (x0i ≤ x̃0i) and (fi(x(t), t) ≤ (f̃i(x(t), t)), i = 1,
2, . . .,  n, then xi(t) ≤ x̃i(t), i = 1, 2, .. ., n, ∀t ≥ t0.

3. Sliding mode interval observer for linear systems

Consider a linear time invariant system described by the system
of Eqs. (3){

ẋ(t) = A x(t) + � B u(t) + D v(t)

y(t) = C x(t)
(3)

with: x(t0) = x0.
where x ∈ R

n, u ∈ R, y ∈ R  are the state, the input and output.
v ∈ R

q represents the unknown disturbance and � represents the
uncertainty parameter for which the lower and upper bounds are
known, that is � ∈

[
�w, �z

]
.

�w and �z are the known lower bound and upper bound respec-
tively.

The matrices A ∈ �n×n, B ∈ �n×1, D ∈ �n×q and C ∈ �1×n are
constant matrices. We  take the following assumptions.

Assumption 1. (A, C) is observable.

Assumption 2. The matrix A is cooperative.

Assumption 3. The input u(t) and the unknown bounded distur-
bance v(t) are positives for all t ∈ R

+.
The lower and the upper bound of v(t) are known, that is

∀t > t0 : 0 < umin < u(t) (4)

∀t > t0 : 0 < vmin < v(t) < vmax (5)

Assumption 4. � is an unknown parameter which satisfies the
following conditions

�w B u(t) < � B u(t) < �z B u(t) (6)

Theorem 1. Let Assumptions 1–4 be satisfied. If there exists a pair of
cooperative systems

ẇ(t) = A w(t) + �wB u(t) + L(y − C w) + Ks(sign(y − C w)) + Dvmin

(7a)

ż(t) = A z(t) + �zB u(t) + L(y − C z) + Ks(sign(y − C z)) + Dvmax

(7b)

with given initial conditions w(t0), z(t0) and satisfying the following
conditions
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