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compare different notions of the robustness properties of state of the art algorithms, while a substantial
emphasis is given to the closed-loop performance and computational complexity properties. Further-
more, connections between (i) the theory of risk and (ii) robust optimization research areas and robust
; o model predictive control are discussed. Lastly, we provide a comparison of current robust model predic-
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1. Introduction
1.1. General Outline

Model predictive control (MPC) technology is a mature research
field developed over four decades both in industry and academia
addressing the question of (practical) optimal control of dynam-
ical systems under process constraints and economic incentives.
Its popularity is mainly attributed to two significant properties
of MPC algorithms; first one is the (explicit) constraint han-
dling capabilities while providing (sub-)optimal operation, see,
e.g., [1-3]; and the second superiority is the ease of extending
the algorithms to multi-input multi-output (MIMO) systems. Many
different approaches were developed, such as; Model Algorithmic
Control in 1978 [4], with finite impulse response models, Dynamic
Matrix Control in 1980 [5], with step response models, General-
ized Predictive Control in 1987 [6], with transfer function models.
Lately, MPC methods developed by considering the state-space
models have become the standard way of formulating predictive
control problems. Throughout the different algorithms, however,
the essence of predictive control is the same and can be stated as,
[7], optimizing over manipulated inputs to control the forecasts of
future process behaviour. Stated rigorously, [8,9], MPC is a form of
control in which the current control action is obtained by solving,
at each sampling instant, a finite or infinite horizon open-loop opti-
mal control problem. In this technique an optimal control sequence
is obtained by using the current state of the plant as the initial state
of the plant and the first control in this sequence is applied to the
plant, while at the next sampling (or decision) instant the whole
procedure is repeated.

The process of selecting an optimal control action can be sum-
marized in two distinct steps [10,11],

(i) shaping the beliefs of future output performances (forecasts);
(ii) the choice of to-be-applied control action as a function of these
forecasts.

A general approach to obtain output forecasts is through
dynamic models describing the process behaviour. During the ini-
tial development of MPC, empirical linear input-output models
were utilized. If the operating window is relatively small, such
models are proved to be sufficient. However, if the operating condi-
tions vary drastically, e.g., batch processes, then nonlinear models
should be used, which effects the complexity of the MPC problem.!
In either case the developed models will be far from perfect; lead-
ing to mismatch between the forecasts and the true behaviour. As a
result, the commissioned MPC controllers are kept non-operational
frequently due to the model deterioration or lack of maintenance
of the model, [14]. It is both natural and logical to include the effect
of (modeled) uncertainty into the prediction model, hence into
the optimal control action. In different words, selecting a control
action on the basis of the nominal forecasts leads to an undesired
operation due to definite dispersion from the expectations in the

1 Here we do not consider the difficult questions of how and at which complexity
level the process model should be constructed. We refer the interested reader to
[12,13] as introductory discussion on modeling uncertain behaviour.

controlled variables. However, uncertainty also radically effects the
optimal control actions in closed-loop predictions, casting them
to become pessimistic (or aggressive), hence the resulting perfor-
mance levels are also effected [15].

A well-established way to overcome or reduce the effects of
uncertainty is by applying feedback techniques. In many instances,
robust control theory [16] provides sufficient tools for achieving
robust operation. However, this design choice often leads to over-
utilization of the available resources as it might not be necessary to
execute a pessimistic control law at each time instant. For industrial
applications, especially in process control industry where economic
concerns are directly effecting the operation decisions, the pes-
simistic control methods are in general rejected and robustness
is achieved in an ad-hoc manner [17]. In recent years, a huge effort
has been put in developing computationally efficient (or tractable)
and less pessimistic (or adjustable) robust optimization tools that
have parameter ambiguity and stochastic uncertainties within the
formulation of the optimization (equivalently MPC) problems [18].

It is important to distinguish three different robustness aspects
of MPC algorithms in the way of treating uncertain effects,

(1) robust feasibility,
(2) robust stability,
(3) robust (closed-loop) performance.

The robust feasibility is about the constraint satisfaction in the
face of uncertainty, while the robust stability is tracked via the cost
function through Lyapunov based stability arguments. We have
a considerable understanding on robust constraint satisfaction or
robust stability while the interplay between the uncertainty and the
closed-loop performance is yet to be rigorously analyzed. Although
there exist some methods to synthesize predictive controllers that
operate in a computationally acceptable way [19], many of the
current robust MPC methods lead to computationally challenging
optimization problems, while causing unacceptable levels of per-
formance deterioration. The performance deterioration, or even the
total absence of performance, due to overly conservative methods is
causing a gap between academic works and industrial implemen-
tations. High performance is achieved if the uncertain effects are
compensated when it is required, while robustness requirements
demand to act in a pre-emptive manner. Hence incorporating only
the necessary uncertain process predictions into the control action
by incorporating risk management techniques is of great interest
for predictive control applications.

Combining robust control and predictive control regarding the
robust constraint satisfaction, stability and performance aspects
with quantitative guarantees is still an open problem. There are
a multitude of techniques, detailed in the next sections, to reshape
robust MPC (RMPC) (or similarly stochastic MPC (SMPC)) problems.
The main dilemma is due to the open-loop nature of predictions,
leading to loss of incorporation of future uncertainty into the control
actions. Dynamic programming (DP) techniques provide a way out
of this problem, however the curse of dimensionality, specifically for
moderate or large scale systems or uncertainty spaces, drastically
effects the computational aspects, see [20].

Another important point regarding the industrial acceptance
of RMPC algorithms is the computational aspect. It is a require-
ment that RMPC problems should be consisting of relatively simple
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