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a  b  s  t  r  a  c  t

This  paper  proposes  a particular  study  of  the  classic  internal  model  control  algorithm  for  a  sampled-
data  system  in  a generalized  context  of  uncertainty.  Besides  the  usually  considered  model  mismatch,  the
particularity  of  the  case  under  consideration  is  that  the  measurements  available  to the  control  algorithm
suffer  from  large,  varying  and  uncertain  delays.  The  presented  study  considers  a simple  SISO  nonlinear
system.  The  control  algorithm  is a sampled  nonlinear  model-based  controller  with  successive  model
inversion  and bias  correction.  The  main  contribution  of this  article  is  its proof  of  global  convergence
and  robustness  despite  time-varying  delays  and  uncertain  measurement  dating.  In particular,  the  model
error, the  varying  delays  and  measurements  dating  error  are  treated  using  monotonicity  of the system
and a detailed  analysis  of the closed-loop  behaviour  of  the  sampled  dynamics,  in  an  appropriate  norm.
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1. Introduction

In this article, we investigate the effects of delay variability and
uncertainty on the internal model controller (IMC, see e.g. [1]) of
a single-input single-output (SISO), static, nonlinear, sampled-data
process with delayed measurements whose dating is uncertain. As
is well-known, the uncertainty and the variability of delays lead to
challenging control problems that may  jeopardize closed-loop sta-
bility, see [2,3] and references therein. It is also known, see [4], that
metrology delays coupled with inaccurate process models could
lead to closed-loop instability. Interestingly, the general treatment
of these issues is still an open problem.

The process and its controller constitute a sampled-data system
(following the terminology employed in e.g. [5,23]) which can be
reformulated using a classic discrete time representation. The spe-
cific case under consideration is actually also formally very similar
to a scalar run-to-run controller, the robustness of which is not
trivial. Run-to-run control is a popular and efficient class of tech-
niques, originally proposed in [6], specifically tailored for processes
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lacking in situ measurement for the quality of the production (see
[7]). Numerous examples of implementations have been reported
in the semiconductor, and materials industry, in particular, see e.g.
[7,8] and references therein. Indeed, the field of run-to-run control
encounters two of the practical problems addressed in this article:
nonlinear model uncertainty and variable metrology delays. While
these issues have often been reported (see, e.g. [4,9–11]), they have
not received any definitive treatment from a theoretical viewpoint.

In the problem considered here, model uncertainty stems from
the interactions between the input and the system states which can
be rather complex, and, in turn, cause some non-negligible uncer-
tainty on the quantitative effects of the input. On the other hand,
the measurements are available after a long time lag covering the
various tasks of sample collection, receipt, preparation, analysis
and transfer of data through an information technology (IT) sys-
tem to the control system. Measurements are thus impacted by
large delays, which can be varying to a large extent, and in some
applications be state- or input-dependant. This variability of the
delay builds up with the intrinsic IT dating uncertainty, because,
in numerous implementations, no reliable timestamp can be asso-
ciated to the measurements, see [12] and references therein. The
delay variability cannot be easily represented by Gaussian mod-
els (e.g. additive noise on the measurement), nor can it be fully
described as deterministic input or state dependant delay, nor
known varying delays that could be exactly compensated for by
predictor techniques (as done in e.g. [13–17]).

http://dx.doi.org/10.1016/j.jprocont.2017.04.003
0959-1524/© 2017 Published by Elsevier Ltd.

dx.doi.org/10.1016/j.jprocont.2017.04.003
dx.doi.org/10.1016/j.jprocont.2017.04.003
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:charles-henri.clerget@mines-paristech.com
mailto:jean-philippe.grimaldi@total.com
mailto:meriam.chebre@total.com
mailto:nicolas.petit@mines-paristech.fr
dx.doi.org/10.1016/j.jprocont.2017.04.003


Please cite this article in press as: C.-H. Clerget, et al., An example of robust internal model control under variable and uncertain delay,
J. Process Control (2017), http://dx.doi.org/10.1016/j.jprocont.2017.04.003

ARTICLE IN PRESSG Model
JJPC-2151; No. of Pages 10

2 C.-H. Clerget et al. / Journal of Process Control xxx (2017) xxx–xxx

In the absence of measurement dating uncertainty, robust sta-
bility in the presence of model mismatch can be readily established,
using the monotonicity of the system and model which is formu-
lated here as an assumption. The study of measurement dating
uncertainty effects is more involved. Once expressed in the sampled
time-scale, the control scheme exhibits a variable delay discrete-
time dynamics. No straightforward eigenvalues or Nyquist criterion
analysis (see [9]) can be used to infer stability. A complete sta-
bility analysis in a space of sufficiently large dimension, with a
well chosen norm, yields a proof of robust stability under a small
gain condition. Interestingly, the small-gain bound is reasonably
sharp, so that it can serve as guideline for practical implementa-
tion. The novelty of the approach presented in this article lies in
the proof technique. It does not treat the uncertainty of the delay
using the Padé approximation approach considered in [18], but
directly uses an extended dimension of the discrete time dynam-
ics. In future works, it is believed that these arguments of proof
could be extended to address more general problems, in particu-
lar to higher dimensional forms (lifted forms) usually considered to
recast general iterative learning control into run-to-run as is clearly
explained in [7].

The paper has two objectives. Firstly, it establishes robust sta-
bility results with respect to model mismatch when measurements
are delayed but exactly dated. Secondly, it extends robust stability
to small model errors when measurement are delayed and their
dating is uncertain. Those results are illustrated through simula-
tions.

2. Notations

Given I an interval of R, and f : I → R  a smooth function, let us
define

‖f ‖∞ = sup
x ∈ I

|f (x)|

For any vector X, note ‖X ‖ 1, ‖X ‖ 2 and ‖X ‖ ∞ its 1-norm, its
Euclidean norm and its infinity norm, respectively. Note ‖·‖ * any
of the vector norms above. For any square matrix A, note ‖A ‖ * the
norm of A, subordinate to ‖·‖ *. Classically (e.g. [19]), for all A, B

‖AB‖∗ ≤ ‖A‖∗‖B‖∗

We  note �x	 the floor value of x, mapping x to the largest previous
integer.

For any matrix of dimension s, define Ei the matrix of general
term ek,l

∀(k, l), ek,l = ık,sıl,i (1)

where ı is the Kronecker delta ıi,j = 1 if i = j and 0 otherwise.

3. Problem statement

3.1. Plant (delay-free)

We  note y the controlled variable (output) of the considered
plant and u the control variable (input). It is assumed that there
exists fp a strictly monotonous smooth function such that

y = fp(u) (2)

Although fp is unknown, we can use a model of it, f, which is also
smooth and monotonous,1 such that fp(0) = f(0). Usually, f is a rough
estimate of fp. Typical models are represented in Fig. 1. For the

1 In practice, it can result from the analysis of sensitivity look-up tables obtained
from experiments and derivation of interpolating models.

Fig. 1. Examples of possible monotonic and smooth input-output mappings f, cour-
tesy  of TOTAL.

simulations considered in this article, the model error can be as
large as 20–40%, which is representative of industrial applications
requirements.

The target value c for the controlled variable is assumed to be
reachable by both the system and the model, i.e. there exists uc and
ũc verifying

fp(uc) = c, f (ũc) = c (3)

3.2. Measurement delay

A measurement system provides estimates of y with some time
delay in a sampled manner. In many cases, this delay is time vary-
ing. Depending on the IT structure, measurements dating is usually
done either using timestamping or an a priori estimation of the
measurement delay. Either way, exact measurement dating is usu-
ally impractical, and some uncertainty on the measurement delay
must be considered.

In the system considered in this article, the measurements avail-
able for feedback in a control loop thus have two specificities.
They are delayed and the measurement delay 0 ≤ D itself is varying
and uncertain. With 0 ≤ D̂ the available estimation of D, we note
� � D̂ − D the mismatch.

Assumption 1. There exits Dmax such that D ≤ Dmax.

Assumption 2. There exits �max such that � ≤ �max. If Assump-
tion 1 holds, it is clear from definition that −Dmax ≤ �.

3.3. Control problem

A closed-loop controller can be designed for the system. Each
time a measurement is received, the control is updated and the
value of the control is kept constant until the next measurement is
received, creating piece-wise constant control signals (with vary-
ing step-lengths). Repetitive application of this process generates a
sequence of inputs and outputs. The delay results in shift of index
in the measurement sequence.

Formally, the control design should aim at solving the following
problem.

Control problem. Create a sequence (un) using the approximate
model f and the delayed measurements (fp(un−Dn ))n ∈ N

of yn such that
lim
n→+∞

fp(un) = c
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