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a  b  s  t  r  a  c  t

Estimation  of  slowly  varying  model  parameters/unmeasured  disturbances  is  of  paramount  importance  in
process monitoring,  fault  diagnosis,  model  based  advanced  control  and  online  optimization.  The  conven-
tional  approach  to estimate  drifting  parameters  is to  artificially  model  them  as  a  random  walk  process  and
estimate  them  simultaneously  with  the states.  However,  this  may  lead  to a poorly  conditioned  problem,
where  the  tuning  of the  random  walk  model  becomes  a non-trivial  exercise.  In  this  work,  the  moving
window  parameter  estimator  of Huang  et al.  [1] is recast  as  a moving  window  maximum  likelihood  (ML)
estimator.  The  state  can  be  estimated  within  the window  using  any  recursive  Bayesian  estimator.  It is
assumed  that,  when  the  model  parameters  are  perfectly  known,  the  innovation  sequence  generated  by
the  chosen  Bayesian  estimator  is a Gaussian  white  noise  process  and  is further  used  to  construct  a likeli-
hood  function  that treats  the  model  parameters  as  unknowns.  This  leads  to a well  conditioned  problem
where  the  only  tuning  parameter  is the  length  of  the  moving  window,  which  is  much  easier  to select
than  selecting  the covariance  of the  random  walk  model.  The ML  formulation  is further  modified  to
develop  a maximum  a posteriori  (MAP)  cost  function  by  including  arrival  cost for  the  parameter.  Efficacy
of the  proposed  ML  and MAP  formulations  has  been  demonstrated  by  conducting  simulation  studies  and
experimental  evaluation.  Analysis  of  the  simulation  and  experimental  results  reveals  that  the  proposed
moving  window  ML  and MAP  estimators  are  capable  of  tracking  the drifting  parameters/unmeasured
disturbances  fairly  accurately  even  when  the  measurements  are  available  at  multiple  rates  and  with
variable  time  delays.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The use of mechanistic dynamic models online for monitoring
and control purpose has received a significant attention in the last
two decades [2–4]. At the core of any model based monitoring and
control scheme is a state estimator, which is used for online anal-
ysis or predictions. The predictive or diagnostic ability of any state
estimation scheme critically depends on accuracy of the model
parameters. While the model parameters may  be known accurately
in the beginning of a monitoring/control project, a common prob-
lem encountered in the implementation of state estimators is slow
drifting of the model parameters from their initial (nominal) val-
ues. For example, in chemical processes, process parameters such
as overall heat transfer coefficients change due to fouling in heat
exchangers, catalysts deactivate over a period of time and feed qual-
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ity may  vary because of changes in the source of raw materials. If
the parameters of the dynamic model are not changed to account
for the variations in the process parameters, then the estimated
state variables are biased. This, in turn, deteriorates the perfor-
mance of the model based monitoring/control scheme. Thus, to
maintain accuracy of the state estimates, parameters/unmeasured
disturbances need to be estimated simultaneously with the states.
Further, the state and parameter estimator can be used as a link
between the real time optimization (RTO) and control layer that
are used together for achieving adaptive and economically optimal
operation in presence of drifting disturbances/parameters [5,6].

A widely used method for estimating the slowly drifting
parameters/disturbances is filtering [6–8]. By this approach, the
parameter variation is typically modelled as a random walk pro-
cess and this model is combined with the process model. This
augmented model is used for developing a nonlinear Bayesian esti-
mation scheme, such as extended Kalman filter (EKF), unscented
Kalman filter (UKF), ensemble Kalman filter (EnKF), particle fil-
ter (PF) or moving horizon estimation scheme (MHE) [9–16]. The
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random walk model artificially assumes that, like the state vari-
ables, the parameters change at each sampling instant while in
reality they may  be drifting very slowly. The main difficulty is in
the selection of an appropriate distribution for the noise driving
the random walk model. Even when the distribution of the noise
term in the random walk model is assumed to be Gaussian, selecting
the covariance of the parameter noise model is a non-trivial exer-
cise. Moreover, if particle filters are used for simultaneous state and
parameter estimation, then estimation of the transition probability
density of the parameter vector based on straightforward applica-
tion of the augmentation approach can lead to degeneracy [8]. Use
of kernel approximation of the posterior density function of the
parameters instead of particle approximation has been employed
to address the degeneracy problem [7,15]. Recently, data driven
approaches have been developed for identification of the noise den-
sity parameters when the parameters/disturbances are modelled as
a random walk [17], or, even as a more general colored ARMA pro-
cess [18]. However, these approaches are highly computationally
intensive, and, as a consequence, are difficult to use for a system of
moderately large dimension.

The other prominent approach in the literature for param-
eter estimation is based on the maximum likelihood principle
[7,19,20]. While a significant section of the literature based on this
approach is on estimation of the linear time series models, like
ARMAX/Box-Jenkins model, or the innovation form of state space
models [19,21,22], identifying parameters of general stochastic
nonlinear differential equations (mechanistic or grey box models)
have also been investigated by many researchers [20,23,24]. The
key step here is approximating the data likelihood function. In the
case of linear time invariant systems that are subjected to Gaus-
sian state noise and Gaussian measurement noise, the innovation
sequence generated using the Kalman filter forms a Gaussian white
noise process. Thus, it is straight forward to construct a likelihood
function using the Gaussianity and independence of the innovation
sequence [20,22]. In the case of nonlinear grey box models, Bohlin
and Graebe [23] and Kristensen et al. [24] have adopted a qualita-
tively similar approach for approximating the likelihood function.
It is assumed that the innovation sequence generated by using the
extended Kalman filter (EKF) is a Gaussian white noise process.
This simplifying assumption facilitates construction of a compu-
tationally tractable likelihood function from the measured output
data. In an alternate approach, similar to the linear state space
model identification [22], Chitralekha et al. [14] and Gopaluni [25]
construct the complete likelihood function, which involves unmea-
sured states and measured output data, for state and parameter
estimation of nonlinear grey-box models. Unlike the conventional
likelihood function which is based on only the measured data,
this approach facilitates treatment of missing data. The resulting
nonlinear non-convex optimization problem is solved using the
expectation maximization (EM) approach. A recent article by Kan-
tas et al. [7] reviews approaches based on particle filtering and
maximum likelihood for estimating parameters of nonlinear state
space models that are subjected to non-Gaussian disturbances.

A significant advantage of the maximum likelihood approach
is that it does not require specification of a probability distribu-
tion function for the parameter vector. The maximum likelihood
estimates are also asymptotically unbiased and consistent. How-
ever, most of the maximum likelihood methods available in the
literature are meant for off-line estimation and for scenario where
the true parameter vector is constant. The parameter estimation
problem is formulated over a batch of data and the ML  methods
yield only a point estimate of the parameter vector [8]. However, if
the true parameters are slowly time varying, then resorting to the
moving time window based formulation can possibly be used to
track the time varying parameters. A moving window formulation
can track slowly changing parameters/disturbances while retain-

ing the advantages of ML  estimation. Jang et al. [10] and Liebman
et al. [26] have proposed moving window based state and parame-
ter estimation methods that have similar ideas. These approaches,
however, uses the model as a simulator (i.e. as a open loop observer
without output feedback) within the window. Huang et al. [1] pro-
posed a moving window based state and parameter estimation
approach that employs a nonlinear observer within the window for
state estimation. This work primarily deals with stability properties
of a broad class of nonlinear recursive estimators, including EKF,
UKF and fixed gain observer, viewed as deterministic estimators.
However, it also very briefly discusses the extension to estimating
parameters over a moving horizon with embedded recursive esti-
mators; this is demonstrated on a small case study. This approach,
however, has been developed under the deterministic framework
and can be viewed as a weighted least squares formulation. A major
disadvantage of using the deterministic framework is that it does
not provide a systematic basis for the selection of the weighting
matrices appearing in the objective function. Recently, this mov-
ing window approach was re-cast under ML  framework by Valluru
et al. [27], which alleviates this difficulty.

This work aims at the development of moving window parame-
ter estimation schemes under the stochastic framework that retains
the advantages of the ML  formulations and can track time vary-
ing parameters/unmeasured disturbances [27]. The preliminary
version of moving window ML  parameter estimator proposed by
Valluru et al. [27] has been substantially enhanced. The parameters
are assumed to be changing slowly (or at a very low frequency)
and, thus, are assumed to remain constant in a time window in the
immediate past. Given a set of model parameters, the state esti-
mation is carried out using a recursive Bayesian estimator, such as
EKF, UKF, EnKF or their respective constrained versions. The param-
eter estimators are developed under a simplifying assumption that,
when the parameters are perfectly known, the innovation sequence
generated by the chosen recursive estimator is a Gaussian white
noise process. This assumption facilitates construction of a compu-
tationally tractable likelihood function. The only ‘tuning parameter’
in the proposed formulation is the length of the moving window,
which is much easier to select than tuning the covariance of the ran-
dom walk model. Another distinguishing feature of the proposed
approach is that, unlike the majority of state and parameter estima-
tion approaches available in the literature, which can handle only
additive noise in the state dynamics, the proposed approach can
accommodate non-additive noise, i.e. noise entering nonlinearly in
the state dynamics. Efficacy of the proposed moving window for-
mulations is demonstrated by conducting simulation studies on an
ideal reactive distillation system and a CSTR system. Further, exper-
imental verification of the proposed approach is carried out using
the benchmark quadruple tank setup available at Automation Lab,
Chemical Engineering, I.I.T. Bombay. With reference to Valluru et al.
[27], the salient contributions of this work are as follows:

• In addition to ML  formulation, a Bayesian or maximum a pos-
teriori (MAP) version of the moving window estimator has been
developed by incorporating prior information in the moving win-
dow ML  formulation.

• Modifications necessary for dealing with measurements that are
sampled at multiple sampling rates and that have time varying
measurement delays have been incorporated.

• In addition to the sliding window formulation proposed in [1,27],
the concept of shifting window based estimation has been intro-
duced, which substantially reduce the on-line computations.

• Performances of the proposed moving window parameter esti-
mators have been evaluated for (a) a multi-rate system with time
varying measurement delays and (b) laboratory scale experimen-
tal data.
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