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Abstract: State-of-the-art critic-only reinforcement learning methods can deal with a small
discrete action space. The most common approach to real-world problems with continuous
actions is to discretize the action space. In this paper a method is proposed to derive a
continuous-action policy based on a value function that has been computed for discrete actions
by using any known algorithm such as value iteration. Several variants of the policy-derivation
algorithm are introduced and compared on two continuous state-action benchmarks: double

pendulum swing-up and 3D mountain car.
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1. INTRODUCTION

Reinforcement Learning (RL) algorithms provide a way to
optimally solve decision and control problems of dynamic
systems (Sutton and Barto, 1998). An RL agent interacts
with the system by measuring the states and applying
actions according to a certain policy. After applying an
action, the RL agent receives a scalar reward signal related
to the immediate performance of the agent. The goal is
to find an optimal policy, which maximizes the long-term
cumulative reward.

The available RL algorithms can be broadly classified into
critic-only, actor-only, and actor-critic methods (Konda
and Tsitsiklis, 2000). Critic-only methods first find the
optimal value function (abbreviated as V-function) and
then derive an optimal policy from this value function.
In contrast, actor-only methods search directly in the
policy space. The two approaches can be combined into
actor-critic architectures, where the actor and critic are
both represented explicitly and learned simultaneously.
The critic learns the value function and based on that
it determines how the policy should be changed. Each
class can be further divided into model-based and model-
free algorithms, depending on the use of a system model
throughout the learning process.

In this paper we consider the critic-only, model-based
variant of RL in continuous state and action spaces. The
typical learning process, depicted in Figure 1, consists of
three steps:

(1) Data collection — using a model of the system or the
system itself, samples in the form (zg,w, Tgt1,Tk+1)
are collected. Here, xj, is the system state, u is the

control input (action), zp41 is the state that the
system reaches from state xj after applying action
u, k41 is the immediate reward for that transition.

(2) Computation of the optimal V-function — based on
the samples, an approximation of the V-function is
learnt, which for each system state predicts the cumu-
lative long-term reward obtained under the optimal
policy.

(3) Policy inference — based on the computed V-function,
the policy is derived at each sampling time (or simu-
lation step), so that the system can be controlled.
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Fig. 1. Model-based critic-only reinforcement learning.

In this paper we address only the third step. Assuming
that a parameterized approximation of the true unknown
V-function has been computed, we derive the policy for
a general, continuous-action input space. We aim at the
maximization of the long-term reward and at the compu-
tational efficiency, so that the method can be applied to
multidimensional action spaces.
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The paper is organized as follows. Section 2 gives a
brief introduction to reinforcement learning. The state-of-
the-art and the proposed policy derivation methods are
described in Section 3, experimentally demonstrated in
Section 4 and discussed in detail in Section 5. Finally,
Section 6 concludes the paper.

2. PRELIMINARIES

Define an n-dimensional state space X C R"™, and m-
dimensional action space Y C R™. The model is described
by the state transition function xxy1 = f(xg,u), with
Tk, Tkpr1 € X and u € U. The reward function assigns
a scalar reward r;41 € R to the state transition from zy,
to Tp41:

Tr1 = f(og, u) (1)
ree1 = (T, u)
Define a finite set of discrete control input values U =
{u1,us,...,un} drawn from Y. The V-function can be
computed by solving the Bellman equation:

V(z) = maxlr(z, u) + 7V (f(z,u))] (2)

where v is the discount factor (a user-defined parameter).
There are several methods to approximate the V-function
for continuous state spaces. In this paper, we use the
fuzzy V-iteration algorithm (Busoniu et al., 2010) as it is
guaranteed to converge and the fuzzy approximator allows
us to interpret the values at each fuzzy set core directly as
the V-function value. The approximation of the V-function
after convergence is denoted by V(:r) The policy is defined
by the following mapping;:

h: X —=>U (3)
The most straightforward way to derive a policy corre-

sponding to the approximate value function V(m) is (Bert-
sekas and Tsitsiklis, 1996):

h(x) € arg max [r(z,u) + 7V (f(@w)] (@)
uelU

However, this policy will be discrete-valued and generally

will not perform well on control problems with continuous

actions. Therefore, we propose alternative methods, whose

aim is to provide a better policy than (4).

3. POLICY DERIVATION METHODS

The goal is to find a continuous-action policy based on
the computed approximate V-function. The measure to
be maximized by the policy is the average of the rewards
obtained during a long-horizon control experiment. Using
long-horizon experiments allows us to effectively measure
the steady state error. The policy derivation problem can
then be formulated as the following maximization:

) AR
h(z) = arg max [A}gnoo N (Z T(xkvh(mk))>] (5)

h(x) 1
with z, = f(zr—_1, h(xg—1)) Vag e X
where N is the number of steps in the control experiment

and the limit is assumed to exist. In the sequel we present
three different policy-derivation methods.

3.1 Related work

The problem of deriving policies for continuous-action
spaces has not been sufficiently addressed in the literature.
The most common approach is to discretize the action
space, compute the value for all the discrete actions, and
select the one that corresponds to the largest V-function
value. One of the earliest references to this approach is
(Santamaria et al., 1996). A drawback of this method
is that the exhaustive search over all available action
combinations quickly becomes intractable as the size of
the action space grows.

Another similar approach is based on sampling (Sallans
and Hinton, 2004; Kimura, 2007). Using Monte-Carlo es-
timation, this approach can find a near-optimal action
without resorting to exhaustive search over a discretized
action space. However, for a good performance this method
requires a large number of samples and is therefore com-
putationally inefficient.

A different approach relies on translating the continuous
action selection step into a sequence of binary decisions.
Each decision whether to decrease or increase the control
action eliminates a part of the action space. This process
stops once a predefined precision is reached. More details
can be found in (Pazis and Lagoudakis, 2009). The main
drawback of this algorithm is that its performance quickly
degrades as the dimensionality of the state and input space
grows (Pazis and Lagoudakis, 2011).

8.2 Fwvaluation over a fine grid of actions

This method relies on a fine resampling of the action space
a posteriori (i.e., after learning the V-function). Define

A=U1XU2X"'XUm, AQZ/{ (6)
where each set U; contains points equidistantly distributed
along the ith dimension of the action space. Set A therefore
contains all combinations of the control inputs for which
the value function is evaluated and the result for the
current state x is stored in array G:

Glu] = r(x,u) + 7V (f (z,u)) (7)

An example of the result for a two-dimensional action
space for one specific z is shown in Fig. 2.

This additional sampling allows to control the system
by applying actions more precisely, while it does not
require extensive computation during learning. The policy
derivation step is formalized in Algorithm 1.

8.8 Chebyshev polynomial approzximation over the action
space

The main idea of this method is that a smooth approxima-
tion over the action space provides more accurate control
and avoids chattering in the case of unstable system equi-
libria. We use Chebyshev polynomials of the first kind,
which are defined by the following recurrent relation:
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