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a b s t r a c t 

One of the important tasks in precision medicine is to identify biomarkers and build classification models 

for clinical diagnose and treatment response. Support vector machine using full features is a common 

approach for classifying diseases in healthcare systems. However, little literature reported to use it toward 

determining minimum features of biomarkers. This study introduced a bilevel mixed-integer optimization 

framework to detect minimum biomarker features for support vector machine. We proposed the two- 

population nested hybrid differential evolution (NHDE) to solve the optimization problem for selecting 

the desired biomarkers. In case studies, the accuracies of classification by SVM using full biomarkers were 

nearly identical to that of 2 biomarkers selected by the minimizing feature approach. Furthermore, the 

approach could determine that the dopamine packed in vesicle in the presynaptic dopamine overactivity 

case and S-adenosyl- l -homocysteine in deficient case were the dominant biomarkers, respectively. The 

two-population NHDE algorithm was more efficient to achieve minimum biomarkers compared with one- 

population NHDE and traditional genetic algorithm. 

© 2017 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 

1. Introduction 

A bi-level optimization problem (BLOP) is a mathematical pro- 

gramming problem that involves two levels of optimization tasks 

[1–3] . BLOPs are different from the common optimization prob- 

lems, as they contain a nested optimization task within the con- 

straints of another optimization problem. The outer optimization 

problem is referred as the upper level task and the inner opti- 

mization problem is referred as the lower level task. The investiga- 

tions in BLOPs are strongly motivated by real-world applications 

found in economics, engineering, transportation, networks, plan- 

ning, and computational biology [4,5] . A BLOP is a special type 

of multi-objective optimization (MOO) problem, and the objec- 

tives between the upper and lower level are hierarchical relation- 

ships so that conventional MOO methods cannot be directly ap- 

plied to solve BLOPs. Numerous conventional algorithms have been 

proposed to solve BLOPs; these algorithms can be classified into 

three categories: vertex enumeration, Kuhn–Tucker and evolution- 

ary algorithms [2,6] . Vertex enumeration algorithms cannot solve 

large-scale problems because they use brute-force computation to 
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enumerate every integer variable. Kuhn–Tucker algorithms have 

been employed to reduce a BLOP to a single-level optimization 

problem by using strong duality theory. However, the computation 

time when such an approach is used can increase exponentially 

when the number of decision variables is increased. 

A few studies have considered solving BLOPs through evolution- 

ary optimization, and most of the methods proposed are nested in 

nature, as discussed on the website of Evolutionary Bi-level Opti- 

mization [6] . One of the earliest evolutionary algorithms for solv- 

ing BLOPs was proposed by Mathieu et al. [3] , who used a ge- 

netic algorithm at the outer level and linear programming at the 

inner level. Yin [7] solved the outer-level sub-problem by using 

a genetic algorithm and the inner-level sub-problem by using the 

reduced gradient method. Differential evolution (DE) at both lev- 

els and nested DE with ant colony optimization have also been 

applied to solve BLOPs [1,8,9] . However, such algorithms require 

lot of computations to determine an optimal solution for large- 

scale BLOPs, such as the rational strain design problem of genome- 

scale metabolic networks. Wang and Wu [10] have introduced a 

nested hybrid differential evolution (NHDE) to solve a genome- 

scale growth-coupled production strain design problem to over- 

come such a drawback. One population of individuals was em- 

ployed in the NHDE algorithm to determine minimum number 

of knocked out genes. However, the premature minimum number 
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Notations 

b the bias 

C the penalty parameter 

d ( x ) the linear discriminant function 

F ( α, z ) the outer/leader objective 

f ( α, z ) the inner/follower objective 

G ( α, z ) the vectors of inequality constraints in the outer op- 

timization problems 

g ( α, z ) the vectors of inequality constraints in the inner op- 

timization problems 

H ( α, z ) the vectors of equality constraints in the outer opti- 

mization problems 

h ( α, z ) the vectors of equality constraints in the inner opti- 

mization problems 

K ( x i , x j ) the kernel function 

T i the prediction indicator 

w the weight vector of the discriminant function 

x i the i th features or input 

y i the negative/positive pattern for the i th training 

data 

z an n -dimensional vector of integer variables 

z k the binary variables for the k th feature 

αi the i th Lagrange multiplier 

ξ i the slack variable for the i th training data 

�TN the set of the training data 

�TS the set of the testing data 

could be achieved by the one population approach. This study pro- 

poses two populations of individuals in the NHDE algorithm to sur- 

mount the weakness. 

In clinical practice, physicians make diagnosis based on the 

symptoms and signs of patients. However, different disorders often 

manifest similarly and overlap of symptoms and signs cause di- 

agnostic difficulty. Biomarkers using molecular biology techniques 

[11] may increase the accuracy of diagnosis and allow disease 

classifications effectively targeted for precision medicine [12] . The 

most biomarkers are generally designed by a support vector ma- 

chine (SVM) using full features. However, such a SVM should use 

all features of a patient so that the diagnostic cost is expensive. 

Moreover, it is difficult to understand which feature or metabo- 

lite is dominant in the system because some features are corre- 

lated and dependent. This study therefore introduced a minimizing 

biomarker framework toward reducing diagnostic costs with simi- 

lar accuracies and achieving the dominant features. 

2. Bilevel optimization for biomarker detection 

2.1. Support vector machine 

Support vector machine (SVM) is a useful technique for data 

classification introduced by Vapnik [13] . The SVM classifier is 

widely used in bioinformatics and computational biology and other 

disciplines due to its high accuracy, ability to deal with high- 

dimensional data such as gene expression, and flexibility in mod- 

eling diverse sources of data [14–21] . SVM is a popular supervised 

learning method that is a means to divide data into categories 

based on common characteristics through a single-level optimiza- 

tion. The data for training a SVM consist of a set of classes or ob- 

jects with its corresponding labels. Each objective contained many 

features or attributes obtained from observations. For instance, we 

have L training data, where each input x i has n attributes and is in 

one of two classes y i = −1 (negative pattern) or y i = + 1 (positive 

pattern), i.e. our training data is of the form 

{ ( x i , y i ) , i = 1 , ..., L } , where y i ∈ { −1 , +1 } , x ∈ � 

n (1) 

A linear classifier is based on a linear discriminant function of 

the form 

d ( x ) = w 

T x + b (2) 

where the vector w is the weight vector and the scalar b is the 

bias. The linear discriminant function is a hyperplane, i.e. a linear 

decision boundary, to linearly separate the dataset into positive or 

negative patterns. For a given hyperplane, we can determine the 

maximum margin classifier that maximizes the geometric margin, 

which is equivalent to minimizing the soft-margin SVM problem of 

the form ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

min 

w ,b, ξi 

1 
2 ‖ 

w ‖ 

2 + C 
L ∑ 

i =1 

ξi 

subject to 

y i 
(
w 

T x i + b 
)

≥ 1 − ξi , i = 1 , ..., L 

ξi ≥ 0 

(3) 

where the penalty parameter C > 0 assigns the relative importance 

of maximizing the margin and minimizing the amount of slack 

variables ξ i penalty. Once the optimal values of w , b and ξ i are 

found, the patterns in the training set can be classified by the dis- 

criminant function d ( x ) either into the −1 or + 1 class. Using the 

method of Lagrange multipliers, the problem ( 3 ) can be formulated 

as the dual problem, which is expressed in terms of Lagrange mul- 

tipliers αi ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

min 

α

[
1 
2 
αT H α − e T α

]
subject to 

L ∑ 

i =1 

αi y i = 0 , 

0 ≤ αi ≤ C, i = 1 , ..., L 

(4) 

where H = [ H ij ] = [ y i y j K ( x i , x j )] and e T = [1,…,1]. The linear kernel 

K ( x i , x j ) is the inner product of x i and x j . The dual formulation is 

a convex quadratic optimization problem, and we can use a QP 

solver to find αi , and leads to an expansion of the weight vector 

in terms of the input features 

w = 

L ∑ 

i =1 

αi y i x i (5) 

2.2. Minimization of biomarker features 

SVM has applied for biomarker identification problems using 

all features of each class [14,16–23] . However, SVM using all fea- 

tures is impractical and expensive diagnostic examination. Further- 

more, it is unable to determine the dominant feature because some 

features are correlated and dependent in the system. Two types 

of feature selection methods, filter method and wrapper method 

[24–26] , are applied to limit the number of input feature in clas- 

sifier in order to have high performance accuracy. Both methods 

do not consider the minimization of features as an objective in 

SVM so that minimum biomarkers may not be achieved. This study 

proposes a bilevel mixed-integer optimization problem (BLMIOP) 

to determine the minimum features to achieve the optimal classi- 

fication. This BLMIOP is referred to as the minimizing biomarker 



Download English Version:

https://daneshyari.com/en/article/7105027

Download Persian Version:

https://daneshyari.com/article/7105027

Daneshyari.com

https://daneshyari.com/en/article/7105027
https://daneshyari.com/article/7105027
https://daneshyari.com

