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1. INTRODUCTION

The lock-in concept is widely used in engineering literature
(Gardner, 2005; Best, 2007). Notion of the lock-in range
can be formulated in the following way (see, e.g. (Gardner,
1966)): if the difference between reference and tunable
frequencies of the circuit belongs to the lock-in range,
then synchronization occurs without cycle slipping (loss
of cycles). In 1979 F. Gardner (Gardner, 1979) formulated
the following problem: “There is no natural way to define
exactly any unique lock-in frequency.” However, “despite
its vague reality, lock-in range is a useful concept” (Gard-
ner, 1979).
In the present work analytical and numerical approaches
for the lock-in range estimation are presented. The analyt-
ical approach is based on the integration of the phase plane
trajectories and analysis of their behaviour (Tricomi, 1933;
Andronov et al., 1937). The numerical approach also can
be applied for the study of PLL-based circuits. However,
one has to pay the special attention to results obtained
by numerical simulations. Particular examples on different
qualitative behaviour for two different ODE solver’s step
sizes can be found in (Bianchi et al., 2015; Leonov et al.,
2015a).
In the present work PLL-based circuits with sinusoidal
characteristics of phase detector are considered. In Section
2 model of PLL-based circuits in the signal’s phase space is
described. In Section 3 rigorous mathematical definitions
for lock-in range are given. Methods for verifying global
stability and methods of phase plane analysis are described
in Subsection 3.1. Effectiveness of obtained in Subsection
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3.1 lock-in range estimations is discussed in Subsections
3.2, 3.3.

2. MODEL OF PLL-BASED CIRCUITS IN THE
SIGNAL’S PHASE SPACE

For the description of PLL-based circuits, a physical model
in the signals space and a mathematical model in the
signal’s phase space are used. Models of the PLL-based
circuits in the signals space are difficult for the study
(Kudrewicz and Wasowicz, 2007) since the equations,
which describe these models, are nonautonomous. By
contrast, equations for the models in the signal’s phase
space are autonomous (Viterbi, 1966; Shakhgil’dyan and
Lyakhovkin, 1966; Gardner, 1966), what simplifies their
study.
From the numerical point of view, advantage of models
in the signal’s phase space is the nonexistence of high-
frequency components, thus simulation in the signal’s
phase space allows one to consider slow varying frequency
only. By contrast, the simulation of PLL-based circuits
in the signals space is complicated since one has to
observe simultaneously both high-frequency (fast changing
of phases) and low-frequency (relatively slow changing
of frequencies) oscillations. The physical models of PLL-
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Figure 1. Model of PLL-based circuit in the signal’s phase
space.

based circuits can be reduced to the models in the signal’s
phase space (Leonov et al., 2012; Best et al., 2014, 2015;
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Marat V. Yuldashev ∗, Renat V. Yuldashev ∗

∗ Faculty of Mathematics and Mechanics, Saint-Petersburg State
University, Russia

∗∗ Dept. of Mathematical Information Technology, University of
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Kuznetsov et al., 2015a; Leonov and Kuznetsov, 2014;
Leonov et al., 2015b; Kuznetsov et al., 2015b) by the
averaging methods (see, e.g., (Mitropolsky and Bogolubov,
1961; Samoilenko and Petryshyn, 2004)). In order to study
models of PLL-based circuits in the signal’s phase space
(see Fig. 1) it is necessary to compute characteristic of a
phase detector – nonlinear element of PLL-based circuits
for matching tunable signals. The characteristic of phase
detector KPDϕ(θ1(t) − θ2(t)) (where KPD is the PD gain
coefficient) is a function with respect to the difference of
phases of reference and tunable oscillators (for the model
in the signals space the result of the work of phase detector
ϕ(t) depends on time t). Further phase difference θ1(t) −
θ2(t) will be denoted as θ∆(t).
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Let us describe a general model of PLL-based circuits in
the signal’s phase space (see Fig. 1). A reference oscillator
and a tunable oscillator generate phases θ1(t) and θ2(t),

PLL circuit
f1(θ1) = sin(θ1)

KPD = 1
2

f2(θ2) = sin(θ2)
f1(θ1) = sin(θ1)

KPD = 2
π

f2(θ2) = sgn(sin(θ2))

f1(θ1) =
{ 2

π θ1 +1,θ1 ∈ [0;π] ,
1− 2

π θ1,θ1 ∈ [π;2π] KPD = 4
π2

f2(θ2) = sin(θ2)
Costas loop

f1(θ1) = cos(θ1)
KPD = 1

8
f2(θ2) = sin(θ2)

Two-phase PLL circuit
f1(θ1) = cos(θ1)

KPD = 1
f2(θ2) = cos(θ2)

Two-phase Costas loop
f1(θ1) = cos(θ1)

KPD = 1
f2(θ2) = cos(θ2)

Table 1. PD characteristics and gain coefficients of the
considered circuits.

respectively. The frequency of carrier signal is constant
and equals ω1:

dθ1(t)
dt

= ω1. (1)

The phases θ1(t) and θ2(t) enter the inputs of a phase
detector. A signal of phase detector output ϕ(θ∆(t))
is filtered by Filter. The proportionally-integrating filter
with the transfer function W (s) = 1+τ2s

τ1s , τ1 > 0, τ2 > 0
is described by the system{

ẋ(t) = ϕ(θ∆(t)),
G(t) = τ2

τ1
KPDϕ(θ∆(t))+ 1

τ1
KPDx(t), (2)

where x(t) is the filter state. In the current paper only
phase detectors with sinusoidal characteristic ϕ(θ∆) =
sinθ∆ are considered.
The output of Filter G(t) serves as a control signal for
VCO:

θ̇2(t) = ωfree
2 +KVCOG(t), (3)

where ωfree
∆ is the VCO free-running frequency and

KVCO > 0 is a VCO gain coefficient.
Equations (1), (3) and system (2) result in autonomous
system of differential equations (here and further difference
of phases ω1 −ωfree

2 is denoted by ωfree
∆ ){

ẋ = sin(θ∆),
θ̇∆ = ωfree

∆ − K0
τ1

(x+ τ2 sin(θ∆)) ,
(4)

where K0 = KVCO ·KPD is the loop gain coefficient.
Analytical results on the lock-in range estimation obtained
for system (4) can be applied to PLL-based circuits with
sinusoidal PD characteristic: classical PLL (see Fig. 2),
Costas loop (see Fig. 3), two-phase PLL (see Fig. 4), and
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