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Abstract: Systems that show patterns or cycles are found throughout nature. The existence of
interaction mechanisms among these systems may generate an overall new collective dynamic
behavior such as synchronization. But not only may the interconnection among systems lead
to synchronization, also the influences of the environment plays an important role in the
stablishment of collective behavior. In this paper we study how synchronization of two diffusively
coupled Hindmarsh-Rose neurons is affected by an exogenous parameter. In particular, we
investigate by means of numerical simulations how the threshold of the coupling strength that
is needed to synchronize depends on the value of the exogenous parameter. For those values of
the exogenous parameter for which the overall behavior of the two coupled neurons is periodic
we perform a local stability analysis of the synchronous state.
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1. INTRODUCTION

Synchronization is a persistent type of time-correlated be-
havior of dynamical systems. This synchronized behavior
is seen in many scenarios throughout nature (e.g. bird
flocks, schools of fishes (Shaw, 1978), firing of fireflies
(Buck, 1988)). In mammalians synchronization arises in
cases such as bursting activity in brain cells, circadian
rhythms, (Enright, 1980) body temperature, pacemaker
cells of the heart (Jalife, 1984), among others.

Disregarding of the scale considered, synchronized behav-
ior emerges due to coupling among individual units and
differs for each system. For example, a school of fish syn-
chronizes due to a highly-specialized sensory structure. By
sensing the environment they keep trace of their position
within the school, and respond quickly to changes in both
water currents and movement of the group (Shaw, 1978).
Many other biological synchronization phenomena can be
found in literature (Strogatz, 2003; Watts et al., 1998;
Winfree, 1967, 1980, 1987).

Synchronization for engineering has been studied for many
years (e.g. electric grids (Blaabjerg et al., 2006), robotic
swarms (Vatankhah et al., 2009), among others). These
applications show the importance of the understanding of
this topic. Many characteristics can be studied about this
phenomenon, such as, coupling strength, topology, time-
delays, and the effects of exogenous parameters (external
parameter) on synchronization. Whereas the properties
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that lead to synchronization have been studied extensively,
the extent to which the conditions for synchronization
depend on an exogenous parameter has received little
attention. An interesting case for synchronization is a
network of neurons. Their interaction is made via chemical
synapses or electrical synapses. Synchrony among neurons
is seen in, for instance, the suprachiasmatic nuclei (SCN).
The SCN is an endogenous biological clock, which is
formed by a network of approximately 20000 neurons.
Being Light the main exogenous parameter that entrains
the SCN (Rohling et al., 2006). It has been observed in
several studies that frequency of oscillatory activity of the
neurons inside the SCN is high during the day and low
during the night. This variation in frequency may influence
synchronization among neurons.

Little direct evidence can be found in literature for syn-
chronization and entrainment induced by an external pa-
rameter. The available evidence is related to neuroscience;
for example Gonze et al. (2005) studied coupling mech-
anisms through global level of neurotransmitter concen-
tration cells entrained by 24hr light-dark cycles. Another
example of network of neurons is presented in the work
of Kunz et al. (2003). They show simulations of a large
network of coupled Van der Pol oscillators. The systems
are arranged in a 2-D lattice, and they included an ex-
ternal parameter called perceived brightness, defined by
certain protocols of light-dark cycles. Their simulations
showed clusters and robustness against noise. Moreover,
Will (2007) argued that not only light stimuli influence
synchronization in the brain, but also external periodic
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acoustic stimuli influences synchronization and entrain-
ment.

In this work, we study the effects of an exogenous param-
eter (or bifurcation parameter) on a network. We analyze
the synchronization properties of two coupled neurons
affected by changing the bifurcation parameter in each
system by the same amount and showing the effects of
this variation on the synchronization threshold.

We present simulations of two coupled oscillators. Each has
Hindmarsh-Rose (H-R) model dynamics, and the coupling
is diffusive (i.e. the weighted difference of the output of
the neurons). It is known that, for a sufficiently strong
coupling, the oscillators synchronize (Steur et al., 2009).
We present the effects of an external parameter affecting
the behavior of each neuron, the repercussion to the
overall synchronization. Simulations are performed to find
a threshold of coupling strength for synchronization as
function of the external parameter. Depending on the
bifurcation parameter, the H-R neurons exhibit different
behaviors, such as resting, oscillatory and chaotic. In the
case that the synchronized solutions are periodic, Floquet
theory is used to perform a local analysis and verify
stability in the periodic region of the neurons.

This paper is organized as follows: In Section 2, we
present the single-oscillator and multi-oscillator models of
Hindmarsh-Rose equations. Also, the different behaviors of
a neuron originated by the bifurcation parameter. Section
3 describes the results of simulations and the coupling
strength threshold of synchronization. Section 4 discusses
a Floquet analysis for the periodic regimes. Concluding
remarks are presented in Section 5.

2. METHODS

Several models of neuron oscillators can be found in lit-
erature, for example Hodgkin-Huxley, FitzZHugh-Nagumo,
Hindmarsh-Rose, among others. In this work, we use the
Hindmarsh-Rose (H-R) model, which provides one of the
simplest models of the more general phenomenon of oscil-
latory (bursting) discharge (Hindmarsh et al., 1984).

2.1 Single-oscillator model
The dynamic equations of the H-R neuron are defined as

2':1 =1- 5y2 — Z1

29 =0.005(4(y + 1.6180) — z2)

=y +3° + -+l
where y is the output potential of the neuron, z; and =z
are internal variables, and I is a bifurcation parameter

(applied current), which regulates the behavior of the
neuron.

(1)

Changing the applied current yields a change of the
dynamics of the model. For 0 < I < 1.4 the neuron
exhibits a Resting state, which means that the states
converge to a stable equilibrium point.

When increasing the bifurcation parameter, the states
yield to limit cycles with different behavior. For instance,
a bursting mode is present for values between 1.4 < I <
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Fig. 1. Different firing behaviors of a H-R model: Bursting
(I = 2), Chaotic (I = 3.25), Tonic Spiking (I = 4)

3.1, this behavior is characterized by periods of firing
that alternate with periods of quiescence. An example is
shown in the top of Figure 1, where, for a bifurcation
parameter I = 2, the output shows a periodic bursting
with three spikes per burst. For a range 3.1 < I < 3.5
chaotic behavior occurs. an example of chaotic bursting
is shown in the middle panel of Figure 1. This means
that no fixed number of bursting spikes exists. In other
words, for infinite time the trajectory of the model never
converges to a unique (periodic) solution, and the model
exhibits some long term aperiodic behavior. In addition,
the behavior depends sensitively on initial conditions.
When the input current takes values of I 2 3.5 the
model exhibits tonic spiking behavior, see the bottom
panel of Figure 1. Frequency of oscillations increases as
of I increases.

A bifurcation diagram that illustrates the behavior of the
H-R model is depicted in Figure 2. It shows the boxplots
of the average number of spikes fired per time unit for
different values of bifurcation parameter. In the figure
we observe the various modes mentioned above. Periodic
bursting is shown as a light grey area, having a persistent
average number of spikes. White area is the chaotic mode,
also seen as the zoom-in box, exhibits a relatively large
standard deviation on the average number of spikes per
time unit. Dark grey region represents the tonic spiking
region, showing that the frequency of spikes increases
proportionally to the bifurcation parameter. Due to the
different initial conditions taken on each simulation, a
small non-zero variance is visible in the average number
of spikes on light and dark grey regions.

2.2 Synchronization in a multi-oscillator model

As being mentioned in the introduction, there are two
types of synapses that establish interaction between neu-
rons: chemical synapses and electrical synapses. The latter
is a direct electrical link between neighboring neurons.
These electrical synapses form a narrow gap between pre-
and postsynaptic neurons are also known as gap junctions,
(Kandel et al., 2012). An approximation to this interaction
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