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1. INTRODUCTION

For a large-scale power system, which generally consists of
interconnected subsystems, a centralized control system is
extremely expensive and difficult to implement because of
huge computational burden and high communication cost.
On the contrary, the decentralized control is a more useful
way to solve issues of data loss and communication delay.

As a result, the decentralized control has been a preferred
strategy for large-scale power systems, because it does not
require the communication between different subsystems.

Recently, several decentralized control methods have been
developed and applied to the disturbance rejection control
of complex power systems. Major ones are the distributed
hierarchical control approach (Suehiro et al, 2012) and the
homotopy method (Chen et al, 2005).

However, above-mentioned conventional schemes are prob-
ably not suitable for a large-scale power system because of
the existence of nonlinear interconnections.

This paper aims at developing a new decentralized control
scheme for the interconnected large-scale power system. A
recursive backstepping scheme is adopted to construct the
decentralize feedback control law that attenuates bounded
exogenous disturbances in the sense of L2-gain.

Our proposed control strategy is tested on a four-machine
power system. It is confirmed by simulation results that a
satisfactory performance has been achieved.

2. SYSTEM DESCRIPTION

We consider a complex electric power system consisting of
n generators (n ∈ Z+) interconnected through a transmis-
sion network.

Definition 1. O denotes a set of points, and is defined as

O ≜ {(ϱ, κ) | ϱ ∈ N , κ ∈ N andκ ̸= ϱ} ,
where the index set N ≜ {1, ..., n}.
Definition 2. The rotor angle deviation is defined as

∆δl (t) ≜ δl (t)− δ∗l , ∀ l ∈ N ,

where δl denotes the rotor angle of the l-th generator, in
rad, and δ∗l denotes the nominal value of δl.

Definition 3. For the l-th generator, zel represents the in-
cremental change in its quadrature-axis transient voltage,
and is defined as

zel (t) ≜ E′
ql (t)− E′

ql,0, ∀ l ∈ N ,

where E′
ql denotes the quadrature-axis transient voltage of

the l-th generator, in pu, E′
ql,0 is the nominal value of E′

ql.

The swing equation for the i-th (i ∈ N ) generator is

2Hi

fs
· d∆fi (t)

dt
+Di∆fi (t) = Pmi (t)− PLi (t)− Ptie,i (t) ,

(1)

where fs is the nominal frequency, in Hz, and for the i-th
generator, ∆fi is its frequency deviation, in Hz, Pmi is its
mechanical input power, in pu, PLi is its load disturbance,
in pu, Ptie,i is its total tie line power flow, in pu, Di is its
damping constant, in pu/Hz, Hi is its inertia constant, in
sec. (Guo et al, 2000)

The rotor angle deviation of the i-th generator is

∆δi (t) = 2π

∫ t

0

∆fi (τ) dτ +∆δi (0) .

Ignoring line losses, the tie line power flow exported from
the i-th generator to the j-th (j ∈ N and j ̸= i) generator
can be written in the form (Guo et al, 2000)

Ptie,ij (t) = E′
qi (t)E

′
qj (t)Bij sin δij (t) , (2)

where Bij (≥ 0) denotes the susceptance between i-th and
j-th nodes, in pu, and δij (t) = δi (t)− δj (t).

Notice that Ptie,ij can be broken up as follows:

Ptie,ij (t) = Bij k̄ij (t) + k∗ij
[
sin δ∗ij + gij (t) + ℓ̄ij (t)

]
, (3)

where for any (i, j) ∈ O,

k̄ij (t) =
[
E′

qi,0zej (t) + E′
qj,0zei (t)

]
sin δij (t)

+ zei (t) zej (t) sin δij (t)

and k∗ij = E′
qi,0E

′
qj,0Bij ≥ 0, δ∗ij = δ∗i − δ∗j ,

gij (t) = sin
[
δi (t)− δ∗j

]
− sin δ∗ij , (4)

ℓ̄ij (t) = sin δij (t)− sin
[
δi (t)− δ∗j

]
. (5)
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Theorem 1. For any (i, j) ∈ O, the interconnected term
gij is bounded by

|gij (t)| ≤ |∆δi (t)| , (6)

while the interconnected term ℓ̄ij is bounded by��ℓ̄ij (t)
�� ≤ |∆δj (t)| . (7)

Proof. We use the trigonometric identity to conveniently
express gij and ℓ̄ij as

gij (t) = 2

[
cos

δi (t)− δ∗j + δ∗ij
2

]
·
[
sin

∆δi (t)

2

]
,

ℓ̄ij (t) = −2

[
cos

δij (t) + δi (t)− δ∗j
2

]
·
[
sin

∆δj (t)

2

]
.

From the inequality
��sin η

2

�� ≤ ��η
2

�� (η ∈ R), it is straightfor-
ward to show that (6) and (7) hold for any (i, j) ∈ O.

The sum of all tie line power flows exported from the i-th
generator is calculated as Ptie,i (t) =

∑n
j=1, j ̸=i Ptie,ij (t).

From (3), it is clear that each Ptie,i can be broken up as

Ptie,i (t) = P ∗
tie,i + Gi (t) + L̄i (t) +

n∑
j=1, j ̸=i

Bij k̄ij (t) , (8)

where P ∗
tie,i =

∑n
j=1, j ̸=i k

∗
ij sin δ

∗
ij and

Gi (t) =

n∑
j=1, j ̸=i

k∗ijgij (t) , L̄i (t) =

n∑
j=1, j ̸=i

k∗ij ℓ̄ij (t) .

Let PLi,0 represent the nominal value of PLi. By perform-
ing simple algebraic manipulations, we have

d∆fi (t)

dt
=− fsDi

2Hi
∆fi (t) +

fs
2Hi

xi1 (t)

− fs
2Hi

Gi (t)−
fs
2Hi

L̄i (t)−
fs
2Hi

wi (t) ,

(9)

where xi1 (t) = Pmi (t)−PLi,0−P ∗
tie,i and wi (t) = w̄i (t)+∑n

j=1, j ̸=i Bij k̄ij (t) with w̄i (t) = PLi (t)− PLi,0.

Without loss of generality, we assume the following condi-
tion on the load disturbance of the i-th generator.

Assumption 1. For any i ∈ N , there exist known positive

scalars di and vi such that |w̄i (t)| ≤ di and
���dw̄i(t)

dt

��� ≤ vi.

Since small variations in load are expected during normal
operation, we make the following assumption.

Assumption 2. Each E′
ql is close to its nominal value, i.e.

zel (t) ≈ 0, ∀ l ∈ N ,

such that for any i ∈ N , wi (t) ≈ w̄i (t).

Generally, we concern disturbance effects on power angles
and frequencies. Therefore, regulation outputs of the i-th
subsystem are chosen as

zi1 (t) =
√
qi1∆δi (t) , zi2 (t) =

√
qi2∆fi (t) ,

where qi1 and qi2 are known positive weighting factors.

The dynamic model of the i-th generator can be expressed
in a compact form as

dzi (t)

dt
=Aizi (t) +Bixi1 (t)

−BiGi (t)−BiL̄i (t)−Biwi (t) ,
(10)

where zi (t) = [zi1 (t) zi2 (t)]
T
.

The i-th turbine is assumed to be of non-reheat type, and
is modeled as (Kundur, 1994)

Tti
dxi1 (t)

dt
= −xi1 (t) + xi2 (t) , (11)

where Tti represents the time constant of the i-th turbine,
in sec, and xi2 represents the incremental change in value
position of the i-th turbine, in pu.

The i-th mechanical-hydraulic type governor can be mod-
eled as the 1st order system (Kundur, 1994)

Tgi
dxi2 (t)

dt
= ui (t)− xi2 (t)−

1

Rgi
∆fi (t) , (12)

where Tgi is the time constant of the i-th governor, in sec,
ui is the control input of the i-th governor, in pu, and Rgi

is the regulation constant of the i-th governor, in Hz/pu.

In (12), setting the pre-feedback ui (t) = vi (t) + xi2 (t) +
1

Rgi
∆fi (t) leads to

dxi2 (t)

dt
=

1

Tgi
vi (t) . (13)

Problem 1. The problem that we have to address is how
to construct the decentralized state feedback control law

vi (t) = αi [zi (t) , xi1 (t) , xi2 (t)] , ∀ i ∈ N ,

so that for a given γ ∈ R+, the corresponding closed-loop
interconnected system satisfies the dissipation inequality

dV (t)

dt
≤ −∥z (t)∥2 + γ̃ ∥w (t)∥2 ,

where V is a Lyapunov function to be constructed, and

z (t) =
[
zT1 (t) · · · zTn (t)

]T
, w (t) = [w1 (t) · · · wn (t)]

T
.

3. DECENTRALIZED CONTROLLER DESIGN

To solve the problem mentioned in the previous section, a
backstepping approach will be adopted. As a consequence,
a desirable decentralized state feedback control law will be
achieved in the recursive design procedure.

The general design procedure involves five steps.

Step 1. Suppose for any i ∈ N , there exists µi ∈ R+ and
Pi ∈ S2++ such that

Ψi (Pi, µi) =


AiPi + PiA

T
i − 2φiBiB

T
i Pi

Pi −µiI2


 < 0,

(14)

where φi is a prescribed positive constant.

Definition 4. The set of β × β symmetric positive definite

matrices is denoted by Sβ++, where β ∈ Z+.

The LMI optimization problem to be solved is

minimize µi

subject to Pi = PT
i >

1

θi
I2, Ψi (Pi, µi) < 0.

Remark 1. For any i ∈ N , θi is a known positive constant,
and the first constraint implies P−1

i ∈ S2++ and P−1
i < θiI2.

The set of optimal solutions is denoted by

µi = µ̃i ∈ R+, Pi = P̃i ∈ S2++.
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