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Abstract: In this paper a distributed leader follower finite time tracking control of higher order
nonlinear multi agent systems (MAS) is presented subject to actuator saturation. A saturated
continuous homogeneous consensus control is developed to obtain finite time convergence. For
stability of the saturated actuators the geometric homogeneity theory is used and it is proven
that all the states of the followers can converge to that of the leader in finite time. Switching
control is designed based on super twisting algorithm to nullify the effect of uncertainties and
external disturbances. It is also ensures that the sliding surface reaches the equilibrium in finite
time. The control law can be effectively used for more general higher order nonlinear agent
dynamics. Simulation results verify the effectiveness of the proposed scheme.
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1. INTRODUCTION

In cooperative control a group of agent reaches a common
agreement based on their local information exchange. In
recent years consensus problem has found many trans-
portation and engineering applications such as coordina-
tion control of marine vehicles Ren and Beard (2008),
consensus control of quadrotors for transportation, air
traffic control Weigang et al. (2008), cooperative control of
unmanned air vehicles Pack et al. (2009); Ghommam and
Saad (2014), autonomous underwater vehicles Yoon and
Qiao (2011) and so on. Among many existing traditional
consensus control approaches Ghasemi et al. (2014); Khoo
et al. (2009); Zhao et al. (2011), the distributed control
approach for multi-agent systems (MAS) provides many
advantages, such as stronger robustness gainst the un-
certainties, less communication requirements and higher
efficiency. In the leader-follower formation, the leader is
usually independent of its followers, but can affect the fol-
lower’s behaviours, while the leader’s behaviour can easily
be controlled, in order to achieve the control objective. For
real time practical control systems actuator saturation is
one of the most common existing nonlinearities since the
capability of any physical actuator is limited. If the effect
of actuator saturation is neglected, it may cause inferior
control performance as well as it can make a system
unstable. So in consensus problem the effect of actuator
saturation cant not be neglected.

A leader-following consensus problem for a group of linear
identical agents subject to control input saturation was
studied in Meng et al. (2013). In Zhang et al. (2014)
a distributed finite-time observer is designed for second
order MAS, where the control inputs are required to
be bounded. In Wei et al. (2014) a high gain feedback

controller is designed for the tracking problem of leader
follower MAS subject to actuator saturation. Which can
achieve asymptotic stability. Most of the above consensus
control problems are solved asymptotically with infinite
setting time. However, faster finite-time convergence rate
is an important indicator for the dynamic behaviors of the
agents and it is often required in consensus problems also.
As a consequence, finite-time control has received great
interest in the control community Ghasemi and Nersesov
(2014); Ghasemi et al. (2014); Khoo et al. (2009); Zuo
(2015). Compared with asymptotical control or exponen-
tial control technique, finite-time control offers less control
effort, faster response, higher accuracy, and better distur-
bance rejection and robustness against uncertainties.
Many results of finite time network consensus control using
sliding mode are reported in the literature Ghasemi and
Nersesov (2014); Ghasemi et al. (2014); Khoo et al. (2009).
The major benefit of sliding mode control is its robustness
against the uncertainties. As we know, the dynamics of
lots of mechanical systems can be modeled as double-
integrators. Thus the MAS with double-integrator dynam-
ics have been paid great attention in recent years Ghasemi
and Nersesov (2014); Ghasemi et al. (2014); Khoo et al.
(2009). Recently, MAS with general high-dimensional lin-
ear dynamics have attracted much attention of researchers
in the control field Ma and Zhang (2010). So designing
consensus algorithms using sliding mode for higher order
MAS is still a considerable challenge. A fixed time consen-
sus tracking problem for homogeneous second-order MAS
is developed in Zuo (2015), where the agent dynamics are
chosen as a simple double integrator system only. Recently
an integral sliding mode control proposed to counteract
the effect of uncertainties is proposed for double integrator
MAS Yu and Long (2015).

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.028



166 Sanjoy Mondal et al. / IFAC-PapersOnLine 49-3 (2016) 165-170

With regard to the finite-time control problem using slid-
ing mode, there are still two difficulties to be settled.
First all these new consensus control techniques Ghasemi
and Nersesov (2014); Ghasemi et al. (2014); Khoo et al.
(2009); Zhao et al. (2011) can only be used when the
agent dynamics are of the second order, i.e. double inte-
grators only. Thus it can be very restrictive, as the agent
dynamics can be of any order. Second, in the consensus
control of MAS, with the interaction information between
all its neighbors each agent updates its control protocol.
However, this control strategy is impractical, as in many
physical systems the power of the actuators are limited.
When the number of agents in a network is very large,
the information from the neighbors exceeds the saturation
value of the actuators.

Motivated by the above mentioned considerations, in this
paper we investigate finite-time control of higher order
nonlinear agent dynamics subject to input saturations. In
this paper, we first introduce a class of saturation func-
tions based on it a distributed finite time bounded control
protocol is obtained for higher order nonlinear MAS. By
applying the homogeneous theory for stability analysis, a
nominal control is obtained such that all the states of the
followers can converge to that of the leader in finite time.
By designing a suitable sliding surface a switching control
is obtained to nullify the effect of the uncertainties in the
agent dynamics.

The rest of this paper is organized as follows. Section 2
and 3 provides mathematical preliminaries and problem
formulation. Section 4 presents homogeneous finite time
consensus control with actuator saturation. An example is
given in Section 5 to verify the theoretical analysis, which
is followed by the conclusion in Section 6.

2. MATHEMATICAL PRELIMINARIES

In this section, we present some preliminary notations on
finite-time stability, graph theory and homogeneous finite-
time consensus of MAS to be used throughout the paper,
and then formulate the finite-time consensus tracking
problem of higher-order MAS with actuator saturation.
Definition:Hong (2002): Consider the system

= f(z), f(0)=0, ze€R" (1)
where f : Uy — R" is continuous in an open neighborhood
Uy of the origin. Let (rq,...,r,) € R with r;, > 0,7 =
1,...,nand f(z) = [f1(2), ..., fn(z)]T be a continuous vec-
tor field. Vector function f(z) is said to be homegeneous
of degree k € R with respect to (rq,...,r,) if for a given
€ >0, fi(€my,....e™mxy,) = Vi fi(x),i = 1,...,n, Vo =
[T1,...,z,]T € R™. System (1) is said to be homogeneous
if f(z) is homogeneous.

Lemma: Bhat and Bernstein (2005): Suppose & =
f(z) is homogeneous of degree x. The origin of the system
is finite-time stable if the origin is asymptotically stable
and the system is with a negative homogeneity i.e. k < 0.

2.1 Graph Theory

Consider a MAS consisting of one leader and N followers.
The communication topology between agents, is modeled
by a weighted directed graph G = {v,e, A} , where v =
{0,1,2,.., N} is the vertex set of the agents, node i

represents the ith agent and € = {(i,j) C vxv}, represents
the set of edges. The weight adjacent matrix is A = (a;; >
0) € §R(NX1)X(NX1), where (Z,]) [SEESERS 2 Qi; = Q55 = 1,
otherwise a;; = aj; = 0 and a; = 0 for all 4 € v
because (i,i) ¢ e. Therefore A is symmetric. For the
leader-follower MAS, another graph G can be considered
to associate the system consisting of N followers with
the leader. The leader adjacency matrix is defined as
B = [by,by,...,by]T € RN with the adjacency element
b; > 0 if agent ¢ is a neighbor of the leader, otherwise
b; = 0. The followers can receive information from the
leader, but cannot send information to the leader.

3. PROBLEM FORMULATION

Suppose the ith follower is governed by nth order dynamics
as,

xlel(xmt)—i_Gt('rut)ut i = 1a277N

yi = ha(wi) (2)
where z; € R, u; € R, and Fi(z;,t) = Fo(w;,t) +
AF;(z;,t) and Gi(z,t) = Golas,t) + AGi(x;,t) are n
dimensional vector fields. It is assumed that Fy(z;,t)
and Go(z;,t) are known functions, while AF;(x;,t) and
AG;(z;,t) are unknown bounded uncertainties.
The Lie derivative of the output function h;(x;) with
respect to the vector field F;(z;,t) can be obtained as
follows:

Oh

L hi(z;) = %Fi(xi,t) (3)

Also the Lie derivative of Lg, h;(x;) with respect to the
vector field G;(z;,t) can be defined as:

Lolnh(e) = 5-(Lah@)Giln ) @

Sice the follower(2) has a relative degree, r = n, therefore
one can easily obtain:

Le, Ly hi(x:) =0 Vk=1,2.,n-1

L, L hi(ai) #0 (5)
Using above, the nth derivative of the output can be
obtained as:

So the ith follower(2) can be transformed as:

Ti1 = Ty

Tin = fi(z;) + gi(xi)u; i=1,2,..,N
= fio(xi, t) + gio(@i, t)ui + Afi(wi t) + Agi(xs, t)u;
Vi
Yi = T41 (7)
where f; = L h; and g; = LGiL};lhi # 0 are the Lie
derivatives. It is also assumed that, f;(x;,t) = fio(zi,t) +

Afi(l‘i,t) and gi(l‘i,t) = gio(l‘i,t) + Agi(.’I}i,t). Afz($“t)
and Ag;(z;,t) are unknown uncertainties and external
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