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Abstract: This paper is concerned with the vibration elimination of a monorail vehicle under a lateral wind 
load and a vertical disturbance. A nonlinear adaptive control is designed for vibration attenuation of the 
vehicle model by using a set of MR dampers both in the lateral and vertical directions. There are limited 
amount of data in literature discussing dynamic instability of the monorail vehicle under the effect of model 
uncertainties. The proposed adaptive controller achieves good performance in road holding and ride 
comfort despite uncertainties in model parameters. 
Keywords: Adaptive control, MR damper, semi-active suspension, monorail vehicle. 



1. INTRODUCTION 

The straddle type monorail vehicles have certain differences 
from traditional rail vehicles. They stride over the guideway 
and run above it. Monorail vehicles have three types of tires 
such as running, guide and stabilization tires. While running 
tires provide the longitudinal movement, guide tires lead the 
truck along the guideway. Moreover, stabilization tires prevent 
excessive rolling motion of the vehicle.  

Monorail transit systems have some advantages such as; low 
manufacturing cost comparing subway systems, low running 
noise and good climbing ability. They can also be operated on 
the small radius of curve tracks (Masamichi et al., Goda et al 
2002). In monorail vehicles, running on rubber tires cause 
abrasion. Existing uncertainties in a monorail vehicle have an 
effect on the performance of suspension systems. The 
reference (Goda et al. 1999) considers track irregularities in 
monorail vehicles.  Semi-active dampers with adaptive control 
are promising devices to improve performance and stability of 
an uncertain system (Yildiz et al. 2014).  

There are many studies on controlling suspension systems by 
using active and semi-active devices. To develop a control 
algorithm that take maximum advantage of the unique features 
of the MR damper, a model must be developed that can 
adequately characterize the damper’s nonlinear and hysteretic 
behaviour (Yildiz et al. 2014, Watanabe 2007). Controlling the 
rolling and vertical motions of the monorail vehicle with semi-
active devices is a new research area. In this study, a lateral 
wind effect and a vertical load are considered as disturbance 
effects in the model of the monorail vehicle. The proposed 
adaptive controller is remarkable because of dealing with 
external disturbances and uncertainties in the model 
parameters. 

2. MODELING OF THE MONORAIL VEHICLE 

Straddle type monorail vehicles run on rubber tires that 
straddle a single guideway beam. Hitachi's monorail car shown 

in (Fig.1) has three types of tires. The running tires support the 
vertical load of the car and transmit the driving and breaking 
forces to the guideway. The guide tires located at the four 
corners of the bogie frame lead the truck along the guideway.  

 

Fig. 1. The straddle type monorail of Hitachi (Hitachi Pres., 2013). 

In this study, Hitachi's straddle type vehicle structure is used 
for modelling (Goda et al 2000). In the modelling structure 
(Fig.2), the lateral and roll dynamics of the monorail vehicle is 
considered and the longitudinal dynamics is neglected. It is 
assumed that the monorail car body and bogie are rigid and the 
center of the masses have the coordinate systems c c cO y z  and 

b b bO y z , respectively. The lateral displacement of the car body 
is denoted by cy and the roll movement of the car body is 
defined by c . Similarly, the lateral and angular displacements 
of the bogie is denoted as by  and b , respectively. Air 
suspensions installed between the car body and the bogie for 
ride comfort of the monorail car are modeled as vertical and 
lateral springs and dampers. The bogie frame of the monorail 
vehicle is connected to the guideway with the running, guide 
and stabilizing tires. The tires are modeled as stiffness and 
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