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Abstract We study System Optimum Dynamic Traffic Assignment (SO-DTA) for realistic
traffic dynamics controlled by variable speed limits, ramp metering, and routing controls. We
consider continuous-time cell-based Dynamic Network Loading models that include the Cell
Transmission Model with FIFO rule at the diverge junctions as well as non-FIFO diverge rules.
We consider SO-DTA formulations in which the total inflow into and the total outflow from the
cells are independently constrained by concave supply and demand functions, respectively, thus
preserving convexity. We design open-loop controllers that guarantee that the optimal solutions
are feasible with respect to realistic traffic dynamics, and we develop this methodology for two
variants of the SO-DTA problem, one of which accounts for exogenous turning ratios. Robustness
of the system trajectory under the proposed controllers is evaluated by deriving bounds on the
deviations induced by perturbations of the initial condition and of the external inflows.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Traffic flow control, cell-transmission model, dynamic traffic assignment, robustness.

1. INTODUCTION

Dynamic Traffic Assignment (DTA), introduced in Mer-
chant and Nemhauser (1978a), has attracted a large
amount of attention by the transportation research com-
munity as a standard framework for control of freeway net-
works, see Peeta and Ziliaskopoulos (2001) for an overview.
The focus of this paper is on System Optimum Dynamic
Traffic Assignment (SO-DTA), that aims at minimizing
a system-level cost function over a planning horizon em-
ploying variable speed limits, ramp metering, and routing
control, and subject to realistic traffic dynamics. The latter
are modelled via a combination of features of the Cell
Transmission Model (CTM), Daganzo (1994), and a gen-
eral Dynamic Network Loading model, Cascetta (2009),
that include both FIFO and non-FIFO policies.

While variable speed limits, ramp metering and routing are
the most common forms of control for freeway networks,
they are not often incorporated in DTA formulations as
they typically lead to non-convex and computationally
expensive optimizations, unsuitable for real-time applica-
tions. Nonetheless, there have been efforts to relax non-
convex features of traffic dynamics and control variables
in DTA. For linear demand and affine supply functions in
CTM, and linear cost, Ziliaskopoulos (2000) shows that
the SO-DTA problem for single destination networks with
no control variables can be cast as a linear program under
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the relaxation where the total inflow into and the total
outflow from the cells are independently constrained to be
upper bounded by supply and demand, respectively. While
the optimal solution to the relaxed problem obviously has
no higher cost than the original formulation, it is not clear
if it can be implemented in the actual traffic dynamics.

The existing efforts to investigate the implementability of
the optimal solution are few and limited to specific types
of demand and supply functions, network structure, and
DNL model. In Muralidharan and Horowitz (2012), the
authors show that the optimal solution obtained under
the relaxation proposed in Ziliaskopoulos (2000) can be
realized exactly for traffic dynamics modeled by the link-
node cell transmission model using ramp metering and
variable speed limits, when demand functions are linear,
supply functions are affine, and the network consists of
a mainline with on- and off-ramps. The first goal of this
paper is to substantially extend the state-of-the-art fol-
lowing our recent contribution Como et al. (2015a). We
show that the SO-DTA with or without exogenous turning
ratios can be written as a convex problem and that its
optimal solution can be realized using a combination of
ramp metering, speed limit and (when available) turning
ratios prescription, for possibly nonlinear demand and
supply functions under mild assumptions and for generic
network topologies, under both FIFO and non-FIFO DNL
models. This methodology is a generalization of the spe-
cific scenarios considered in Muralidharan and Horowitz
(2012).
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The second goal objective of this paper is to study ro-
bustness of optimal solutions of the considered SO-DTA
formulations with respect to uncertainties in initial con-
dition and external inflow over the planning horizon. We
provide bounds on the maximum perturbation of the sys-
tem trajectory under the proposed open-loop controllers
in terms of perturbations in initial condition and external
inflows. We leverage a certain monotonicity property that
is satisfied whenever the traffic dynamics is in free-flow,
which we prove to be the case for the optimal trajectory
and for trajectories close to it. The resulting bounds are
applicable for values of perturbations that are relatively
larger than those obtained through sensitivity analysis of
ordinary differential equations. The proposed bounds are
shown to be in close agreement with simulated trajectories
on the benchmark network in Ziliaskopoulos (2000). While
we limit our analysis to perturbations on initial conditions
and external inflows, future research include perturbations
in demand, supply and turning ratios, therefore analysing
the robustness of the proposed control when drivers do not
follow the nominal traffic model.

The paper is organized as follows. Section 2 summarizes
the convex formulations of SO-DTA introduced in Como
et al. (2015a) and discusses their feasibility with respect to
traffic dynamics for general DNL models, including FIFO
and non-FIFO policies. Section 3 provides perturbations
bounds on DTA solution due to uncertainties in initial con-
dition and external inflows. Section 4 presents numerical
simulations. The proofs of technical results can be found
in the extended version of this work Como et al. (2015a).

2. CONVEX FORMULATIONS AND FEASIBILITY
OF CONTINUOUS-TIME DTA

This section summarizes the framework introduced in
Como et al. (2015a) for convex continuous-time SO-DTA
and their feasibility for general DNL models including
FIFO and non-FIFO policies.

2.1 Convex Formulations of continuous-time SO-DTA

We describe the topology of the transportation network as
a directed multi-graph G = (V, &), where nodes represent
junctions and links represent cells. The head and tail nodes
of a cell i are denoted by 7; and o3, so i is directed from o;
to 7;. One particular node w € V represents the external
world, with cells ¢ such that o; = w and cells 7 such that
7; = w representing on-ramps and off-ramps, respectively.
The sets of on-ramps and off-ramps will be denoted by R
and R°, respectively. The topology is typically illustrated
by omitting such external node w and letting on-ramps
have no tail node and off-ramps have no head node. (See
Figure 1.) The set A = {(i,j) € EXE: 7, =0 # w} is
the set of all pairs of adjacent (consecutive) cells.

The dynamic state of the network is described by a time-
varying vector z(t) € R whose entries z;(t) represent the
mass (or traffic volume) in cell ¢ € £ at time ¢. The inputs
of the network are the inflows \;(¢) > 0 at on-ramps i € R.
Conventionally, we set A;(t) = 0 for any ¢ ¢ £\ R, and
stack up all the inflows in a vector A(t) € R€. The physical
constraints are captured by demand functions d;(z;) and
supply functions s;(z;), returning the maximum possible

Figure 1. A multi-origin multi-destination cyclic network.

outflow from cells i € £ and the maximum possible
inflow in non on-ramp cells i € £ \ R, respectively, as
a function of the current mass z;. Conventionally, we put
si(z;) = 400 at all on-ramps ¢ € R. The demand functions
are assumed to be continuous, non-decreasing, and such
that d;(0) = 0, while the supply functions are assumed to
be continuous, non-increasing, and such that s;(0) > 0,
with 2} = inf{z; > 0: s;(z;) = 0} denoting cell ¢’s jam
mass. Crucially, we focus on the case where all demand
and supply functions are concave in their argument.

We assume that an initial value x? > 0 on every cell
i € £ is given, and we aim to minimize the integral of a
running cost ¥(x), function of the entire vector of mass
x, over a time horizon [0,T]. We assume that ¢ (z) is
convex in x, nondecreasing in each entry x;, and such that
¥(0) = 0. A particularly relevant case is a separable cost,
e.g., when o (x) = >, o i(x;), for convex non-decreasing
costs 9;(x;) on each i € £, with 1;(0) = 0. We will use the
following optimization variables, all function of time: x;,
yi, and z; stand, respectively, for the mass on, the inflow
in, and the outflow from, cell i € &; f;; stands for the flow
between two cells i, j; and p; is the the out-flow from an
off-ramp i € R° that leaves the network.

The basic version of the SO-DTA problem can be formu-
lated as the following optimization problem

T
min/o Y(x(t))dt (1)
such that,
z;(0) = 2?,
and for all ¢ € [0, 7],
& (t) = yi(t) — z(1),
vit) = X)) + > fiilt),
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yi(t) < si(zi(t)), zi(t) < di(zi(t)),

Let us now consider an exogenous, possibly time-varying,
routing matrix R, which is a nonnegative £ x £ matrix
satisfying the network topology constraints

ie&. (1)

Rij=0, (i,j) € (ExE)\A, (8)
ZRU‘:l, iES\RO. (9)
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The matrix R is to be interpreted as describing the drivers’
route choices, with its entries I2;;, sometimes referred to
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