
IFAC-PapersOnLine 49-3 (2016) 465–470

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.07.078

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Reliable Code Generation and Test Environment demonstrated on a PI-
Controller Design

Schwarz M.H.*., Sheng H.***, Üstoglu I. **, Chabaan W. *** & Börcsök J.***

* Safety Computer Technology, University of Kassel, Germany.

* Control and Automation Engineering Department, Yildiz Technical University, Istanbul, Turkey

*** Computer Architecture and System Programming, University of Kassel, Germany.

Abstract: This paper focuses on the latest version of a tool developed within the department to guide

developer through the various steps of requirements, test-procedures and documentations to finally

download the derived algorithm on a safety programmable logic controller (PLC). Requirements on how

to develop and how to test software are steadily increasing due to international standards, which have to

be obeyed in industries in general, and in the process- and automation industries in particular. A simple

model is derived to be used to develop a PI controller that has to pass several steps to be qualified for

execution on a PLC. The paper explains the different steps and describes the various problems that might

occur.

Keywords: safety, reliability, automated code generation, PI control, international standards.

1. INTRODUCTION

Novel and advanced algorithms, particularly developed in

academia, are often not adopted in industries, which does not

indicate a lag of usability or complex procedures, but those

algorithms are often either demonstrated in simulation or

using self developed hardware with components of the shelf.

In industries, programmable logic controllers (PLC) are the

most used and widespread hardware systems. Those derived

algorithms have either to be operated on such PLCs or are not

of interest for industries. One way to overcome this problem

is to re-develop the algorithms in a PLC conform language to

be used on such systems. However, this procedure can be

time consuming and fault-prone, then the original algorithms

and the adopted algorithms have to be kept consistent. The

other way is to use software interfaces, if they are applicable

and made public to the user, to incorporate the developed

algorithms into an industrial accepted environment.

One advantage of using programmable logic controllers as a

target system is that the developer has not to consider safety

and reliability issues, at least at the first glance. Safety,

reliability and availability in the sense of international

standards such as the IEC 61508 (2010) are important issues

in industries and manufactures have to develop their systems

in accordance to relevant safety standards. Such standards

provide guidance on how to develop safe and reliable

systems, this includes hardware development and software

development and generally follows the development

schematic shown in Figure 1. Industries have to put much

effort into safety and reliability development and that is why

it is obvious that the development of applications, which are

the algorithms derived by academia, has also to follow

stringent rules, in such a way that the overall reliability is not

decreased due to malfunctioning or bad written code. The

programming languages normally used in industries are

defined in the international standard IEC 61131-3 (2010).

Fig 1: Development schematic

Programmes, algorithms and functions can be written in one

of the five described languages, three are graphical oriented

and two are textual languages. However, original algorithms

for example developed in Matlab®, Simulink® or LabView®

have to be re-written.

A very interesting publication by Valencia-Palomo and

Rossiter (2011a) is a good example for using a conversion to

apply research on a PLC. In this case a model predictive

strategy was developed and converted to Structured Text to

operate the development on an Allen Bradley–Rockwell

Automation PLC. The authors argue that at the end the

derived development has to be operated on a system to be

trusted and used in industries. Additionally, the paper

presents a robust, constraint but simple design of a Model

Predictive Controller (MPC), which outperforms a

Proportional-Integral-Derivative (PID) Controller. In many

cases, PID control is still the preferred strategy in use.

However, MPC control was established in industries and was

analysed in academia and possesses potential to outperform a

PID controller.

Another paper by Valencia-Palomo and Rossiter (2011b)

uses a combination of Ladder logic and Structured Text to

Problem

description

Requirements

System design

Component

design

Modul design Modul test

Integration test

System test

Approval

System

operating

Design Verification Product flow Validation Integration

14-th IFAC Symposium on Control in Transportation Systems
May 18-20, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 465

Reliable Code Generation and Test Environment demonstrated on a PI-
Controller Design

Schwarz M.H.*., Sheng H.***, Üstoglu I. **, Chabaan W. *** & Börcsök J.***

* Safety Computer Technology, University of Kassel, Germany.

* Control and Automation Engineering Department, Yildiz Technical University, Istanbul, Turkey

*** Computer Architecture and System Programming, University of Kassel, Germany.

Abstract: This paper focuses on the latest version of a tool developed within the department to guide

developer through the various steps of requirements, test-procedures and documentations to finally

download the derived algorithm on a safety programmable logic controller (PLC). Requirements on how

to develop and how to test software are steadily increasing due to international standards, which have to

be obeyed in industries in general, and in the process- and automation industries in particular. A simple

model is derived to be used to develop a PI controller that has to pass several steps to be qualified for

execution on a PLC. The paper explains the different steps and describes the various problems that might

occur.

Keywords: safety, reliability, automated code generation, PI control, international standards.

1. INTRODUCTION

Novel and advanced algorithms, particularly developed in

academia, are often not adopted in industries, which does not

indicate a lag of usability or complex procedures, but those

algorithms are often either demonstrated in simulation or

using self developed hardware with components of the shelf.

In industries, programmable logic controllers (PLC) are the

most used and widespread hardware systems. Those derived

algorithms have either to be operated on such PLCs or are not

of interest for industries. One way to overcome this problem

is to re-develop the algorithms in a PLC conform language to

be used on such systems. However, this procedure can be

time consuming and fault-prone, then the original algorithms

and the adopted algorithms have to be kept consistent. The

other way is to use software interfaces, if they are applicable

and made public to the user, to incorporate the developed

algorithms into an industrial accepted environment.

One advantage of using programmable logic controllers as a

target system is that the developer has not to consider safety

and reliability issues, at least at the first glance. Safety,

reliability and availability in the sense of international

standards such as the IEC 61508 (2010) are important issues

in industries and manufactures have to develop their systems

in accordance to relevant safety standards. Such standards

provide guidance on how to develop safe and reliable

systems, this includes hardware development and software

development and generally follows the development

schematic shown in Figure 1. Industries have to put much

effort into safety and reliability development and that is why

it is obvious that the development of applications, which are

the algorithms derived by academia, has also to follow

stringent rules, in such a way that the overall reliability is not

decreased due to malfunctioning or bad written code. The

programming languages normally used in industries are

defined in the international standard IEC 61131-3 (2010).

Fig 1: Development schematic

Programmes, algorithms and functions can be written in one

of the five described languages, three are graphical oriented

and two are textual languages. However, original algorithms

for example developed in Matlab®, Simulink® or LabView®

have to be re-written.

A very interesting publication by Valencia-Palomo and

Rossiter (2011a) is a good example for using a conversion to

apply research on a PLC. In this case a model predictive

strategy was developed and converted to Structured Text to

operate the development on an Allen Bradley–Rockwell

Automation PLC. The authors argue that at the end the

derived development has to be operated on a system to be

trusted and used in industries. Additionally, the paper

presents a robust, constraint but simple design of a Model

Predictive Controller (MPC), which outperforms a

Proportional-Integral-Derivative (PID) Controller. In many

cases, PID control is still the preferred strategy in use.

However, MPC control was established in industries and was

analysed in academia and possesses potential to outperform a

PID controller.

Another paper by Valencia-Palomo and Rossiter (2011b)

uses a combination of Ladder logic and Structured Text to

Problem

description

Requirements

System design

Component

design

Modul design Modul test

Integration test

System test

Approval

System

operating

Design Verification Product flow Validation Integration

14-th IFAC Symposium on Control in Transportation Systems
May 18-20, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 465

Reliable Code Generation and Test Environment demonstrated on a PI-
Controller Design

Schwarz M.H.*., Sheng H.***, Üstoglu I. **, Chabaan W. *** & Börcsök J.***

* Safety Computer Technology, University of Kassel, Germany.

* Control and Automation Engineering Department, Yildiz Technical University, Istanbul, Turkey

*** Computer Architecture and System Programming, University of Kassel, Germany.

Abstract: This paper focuses on the latest version of a tool developed within the department to guide

developer through the various steps of requirements, test-procedures and documentations to finally

download the derived algorithm on a safety programmable logic controller (PLC). Requirements on how

to develop and how to test software are steadily increasing due to international standards, which have to

be obeyed in industries in general, and in the process- and automation industries in particular. A simple

model is derived to be used to develop a PI controller that has to pass several steps to be qualified for

execution on a PLC. The paper explains the different steps and describes the various problems that might

occur.

Keywords: safety, reliability, automated code generation, PI control, international standards.

1. INTRODUCTION

Novel and advanced algorithms, particularly developed in

academia, are often not adopted in industries, which does not

indicate a lag of usability or complex procedures, but those

algorithms are often either demonstrated in simulation or

using self developed hardware with components of the shelf.

In industries, programmable logic controllers (PLC) are the

most used and widespread hardware systems. Those derived

algorithms have either to be operated on such PLCs or are not

of interest for industries. One way to overcome this problem

is to re-develop the algorithms in a PLC conform language to

be used on such systems. However, this procedure can be

time consuming and fault-prone, then the original algorithms

and the adopted algorithms have to be kept consistent. The

other way is to use software interfaces, if they are applicable

and made public to the user, to incorporate the developed

algorithms into an industrial accepted environment.

One advantage of using programmable logic controllers as a

target system is that the developer has not to consider safety

and reliability issues, at least at the first glance. Safety,

reliability and availability in the sense of international

standards such as the IEC 61508 (2010) are important issues

in industries and manufactures have to develop their systems

in accordance to relevant safety standards. Such standards

provide guidance on how to develop safe and reliable

systems, this includes hardware development and software

development and generally follows the development

schematic shown in Figure 1. Industries have to put much

effort into safety and reliability development and that is why

it is obvious that the development of applications, which are

the algorithms derived by academia, has also to follow

stringent rules, in such a way that the overall reliability is not

decreased due to malfunctioning or bad written code. The

programming languages normally used in industries are

defined in the international standard IEC 61131-3 (2010).

Fig 1: Development schematic

Programmes, algorithms and functions can be written in one

of the five described languages, three are graphical oriented

and two are textual languages. However, original algorithms

for example developed in Matlab®, Simulink® or LabView®

have to be re-written.

A very interesting publication by Valencia-Palomo and

Rossiter (2011a) is a good example for using a conversion to

apply research on a PLC. In this case a model predictive

strategy was developed and converted to Structured Text to

operate the development on an Allen Bradley–Rockwell

Automation PLC. The authors argue that at the end the

derived development has to be operated on a system to be

trusted and used in industries. Additionally, the paper

presents a robust, constraint but simple design of a Model

Predictive Controller (MPC), which outperforms a

Proportional-Integral-Derivative (PID) Controller. In many

cases, PID control is still the preferred strategy in use.

However, MPC control was established in industries and was

analysed in academia and possesses potential to outperform a

PID controller.

Another paper by Valencia-Palomo and Rossiter (2011b)

uses a combination of Ladder logic and Structured Text to

Problem

description

Requirements

System design

Component

design

Modul design Modul test

Integration test

System test

Approval

System

operating

Design Verification Product flow Validation Integration

14-th IFAC Symposium on Control in Transportation Systems
May 18-20, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 465

Reliable Code Generation and Test Environment demonstrated on a PI-
Controller Design

Schwarz M.H.*., Sheng H.***, Üstoglu I. **, Chabaan W. *** & Börcsök J.***

* Safety Computer Technology, University of Kassel, Germany.

* Control and Automation Engineering Department, Yildiz Technical University, Istanbul, Turkey

*** Computer Architecture and System Programming, University of Kassel, Germany.

Abstract: This paper focuses on the latest version of a tool developed within the department to guide

developer through the various steps of requirements, test-procedures and documentations to finally

download the derived algorithm on a safety programmable logic controller (PLC). Requirements on how

to develop and how to test software are steadily increasing due to international standards, which have to

be obeyed in industries in general, and in the process- and automation industries in particular. A simple

model is derived to be used to develop a PI controller that has to pass several steps to be qualified for

execution on a PLC. The paper explains the different steps and describes the various problems that might

occur.

Keywords: safety, reliability, automated code generation, PI control, international standards.

1. INTRODUCTION

Novel and advanced algorithms, particularly developed in

academia, are often not adopted in industries, which does not

indicate a lag of usability or complex procedures, but those

algorithms are often either demonstrated in simulation or

using self developed hardware with components of the shelf.

In industries, programmable logic controllers (PLC) are the

most used and widespread hardware systems. Those derived

algorithms have either to be operated on such PLCs or are not

of interest for industries. One way to overcome this problem

is to re-develop the algorithms in a PLC conform language to

be used on such systems. However, this procedure can be

time consuming and fault-prone, then the original algorithms

and the adopted algorithms have to be kept consistent. The

other way is to use software interfaces, if they are applicable

and made public to the user, to incorporate the developed

algorithms into an industrial accepted environment.

One advantage of using programmable logic controllers as a

target system is that the developer has not to consider safety

and reliability issues, at least at the first glance. Safety,

reliability and availability in the sense of international

standards such as the IEC 61508 (2010) are important issues

in industries and manufactures have to develop their systems

in accordance to relevant safety standards. Such standards

provide guidance on how to develop safe and reliable

systems, this includes hardware development and software

development and generally follows the development

schematic shown in Figure 1. Industries have to put much

effort into safety and reliability development and that is why

it is obvious that the development of applications, which are

the algorithms derived by academia, has also to follow

stringent rules, in such a way that the overall reliability is not

decreased due to malfunctioning or bad written code. The

programming languages normally used in industries are

defined in the international standard IEC 61131-3 (2010).

Fig 1: Development schematic

Programmes, algorithms and functions can be written in one

of the five described languages, three are graphical oriented

and two are textual languages. However, original algorithms

for example developed in Matlab®, Simulink® or LabView®

have to be re-written.

A very interesting publication by Valencia-Palomo and

Rossiter (2011a) is a good example for using a conversion to

apply research on a PLC. In this case a model predictive

strategy was developed and converted to Structured Text to

operate the development on an Allen Bradley–Rockwell

Automation PLC. The authors argue that at the end the

derived development has to be operated on a system to be

trusted and used in industries. Additionally, the paper

presents a robust, constraint but simple design of a Model

Predictive Controller (MPC), which outperforms a

Proportional-Integral-Derivative (PID) Controller. In many

cases, PID control is still the preferred strategy in use.

However, MPC control was established in industries and was

analysed in academia and possesses potential to outperform a

PID controller.

Another paper by Valencia-Palomo and Rossiter (2011b)

uses a combination of Ladder logic and Structured Text to

Problem

description

Requirements

System design

Component

design

Modul design Modul test

Integration test

System test

Approval

System

operating

Design Verification Product flow Validation Integration

14-th IFAC Symposium on Control in Transportation Systems
May 18-20, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 465

Reliable Code Generation and Test Environment demonstrated on a PI-
Controller Design

Schwarz M.H.*., Sheng H.***, Üstoglu I. **, Chabaan W. *** & Börcsök J.***

* Safety Computer Technology, University of Kassel, Germany.

* Control and Automation Engineering Department, Yildiz Technical University, Istanbul, Turkey

*** Computer Architecture and System Programming, University of Kassel, Germany.

Abstract: This paper focuses on the latest version of a tool developed within the department to guide

developer through the various steps of requirements, test-procedures and documentations to finally

download the derived algorithm on a safety programmable logic controller (PLC). Requirements on how

to develop and how to test software are steadily increasing due to international standards, which have to

be obeyed in industries in general, and in the process- and automation industries in particular. A simple

model is derived to be used to develop a PI controller that has to pass several steps to be qualified for

execution on a PLC. The paper explains the different steps and describes the various problems that might

occur.

Keywords: safety, reliability, automated code generation, PI control, international standards.

1. INTRODUCTION

Novel and advanced algorithms, particularly developed in

academia, are often not adopted in industries, which does not

indicate a lag of usability or complex procedures, but those

algorithms are often either demonstrated in simulation or

using self developed hardware with components of the shelf.

In industries, programmable logic controllers (PLC) are the

most used and widespread hardware systems. Those derived

algorithms have either to be operated on such PLCs or are not

of interest for industries. One way to overcome this problem

is to re-develop the algorithms in a PLC conform language to

be used on such systems. However, this procedure can be

time consuming and fault-prone, then the original algorithms

and the adopted algorithms have to be kept consistent. The

other way is to use software interfaces, if they are applicable

and made public to the user, to incorporate the developed

algorithms into an industrial accepted environment.

One advantage of using programmable logic controllers as a

target system is that the developer has not to consider safety

and reliability issues, at least at the first glance. Safety,

reliability and availability in the sense of international

standards such as the IEC 61508 (2010) are important issues

in industries and manufactures have to develop their systems

in accordance to relevant safety standards. Such standards

provide guidance on how to develop safe and reliable

systems, this includes hardware development and software

development and generally follows the development

schematic shown in Figure 1. Industries have to put much

effort into safety and reliability development and that is why

it is obvious that the development of applications, which are

the algorithms derived by academia, has also to follow

stringent rules, in such a way that the overall reliability is not

decreased due to malfunctioning or bad written code. The

programming languages normally used in industries are

defined in the international standard IEC 61131-3 (2010).

Fig 1: Development schematic

Programmes, algorithms and functions can be written in one

of the five described languages, three are graphical oriented

and two are textual languages. However, original algorithms

for example developed in Matlab®, Simulink® or LabView®

have to be re-written.

A very interesting publication by Valencia-Palomo and

Rossiter (2011a) is a good example for using a conversion to

apply research on a PLC. In this case a model predictive

strategy was developed and converted to Structured Text to

operate the development on an Allen Bradley–Rockwell

Automation PLC. The authors argue that at the end the

derived development has to be operated on a system to be

trusted and used in industries. Additionally, the paper

presents a robust, constraint but simple design of a Model

Predictive Controller (MPC), which outperforms a

Proportional-Integral-Derivative (PID) Controller. In many

cases, PID control is still the preferred strategy in use.

However, MPC control was established in industries and was

analysed in academia and possesses potential to outperform a

PID controller.

Another paper by Valencia-Palomo and Rossiter (2011b)

uses a combination of Ladder logic and Structured Text to

Problem

description

Requirements

System design

Component

design

Modul design Modul test

Integration test

System test

Approval

System

operating

Design Verification Product flow Validation Integration

14-th IFAC Symposium on Control in Transportation Systems
May 18-20, 2016. Istanbul, Turkey

Copyright © 2016 IFAC 465

466 Schwarz M.H. et al. / IFAC-PapersOnLine 49-3 (2016) 465–470

implement their controller system and demonstrate the use of

IEC 61131-3 languages in research. However, this example

shows that a more reliable automated code converter would

be beneficial and necessary.

But not only academia has its problems to get developed

algorithms on reliable hardware, also industries increasingly

realise the benefits of model-based design. Therefore, many

additional analytical and verification functions and

algorithms are provided by software environments such as

Matlab® and Simulink® from TheMathworks® or Labview®

from National Instruments® to be used in industries.

A very interesting example of modern model-based design is

presented by Snooke and Price C. (2012). They describe a

model-based system that is functioning as a diagnostic model

to determine whether the original process is working

correctly or if faults occurred that might lead to a failure. The

model has incorporated the FMEA (Fault Modes and Effect

Analysis) and provides information about the actual

behaviour of the system. This example shows a very

advanced way to used model-based design.

The remaining paper is structured as follows: Section 2 will

present a system that is going to be modelled and used as a

process for system identification. Section 3 introduces a

simple example to design a PID controller. Section 4 will

briefly introduce the different IEC 6111-3 languages. In the

following section this PI controller will be converted through

several steps onto a PLC. The process-model will also be

converted and has to pass all steps to be downloaded onto a

different PLC. In section 6, both PLCs will interact with each

other as process and controller and this will be compared

with the original models derived and used in simulations.

Conclusions are drawn and future work is presented in last

section.

2. PROCESS MODEL AND IDENTIFICATION

In this section, a tank that can be filled with liquid should be

modelled. The tank has one inlet (II) valve and can be

described with Eq. 1. Additionally, the tank possesses an

outlet valve (IO) that can be described with Eq. 2. The volume

can be calculated by calculating the difference between input

and output and summed up, which is done in Eq.3. The tank

itself is a simple model but can often be found in process

industries.

Fig 2: Schematic of a tank model

The inlet value can be defined as the volume flow:

I I=
Volume

time
=
V

t
=
A⋅h
t

=AI⋅vI
(1)

The outlet value can be defined as the volume flow:

IO=
Volume

time
=
V

t
=
A⋅h
t

=AO⋅vO
(2)

The current volume of the tank can be calculated as follows:

∫
t
0

t
1

(I 1−IO)dt=∫
h
0

h
1

A⋅dh
(3)

The current height can be determined by:

Hcurrent=

∫
t
0

t
1

(I 1−IO)dt

ATank

(4)

The current effluent velocity can be calculated using the

Torricelli equation:

vcurrent=√2⋅g⋅hcurrent (5)

Using Eq. 2 and Eq. 5 results in:

IO=V̇=Avalve⋅vcurrent=Avalve⋅√2⋅g⋅hcurrent (6)

The outlet area is the diameter of the outlet valve and can be

controlled from entirely open via a fraction of the diameter to

fully closed.

Fig 3: Simulink schematic

Figure 3 shows the model-based design of the tank with three

inputs: the inlet volume, which can be controlled by the inlet

valve control, the outlet control regulates the outlet valve

from 0 % (closed) to 100% (fully open). The outputs are the

current height of the liquid in the tank and the amount of

liquid that leaves the tank. This model serves as a base to

calculate the control parameters in the next section.

IFAC CTS 2016
May 18-20, 2016. Istanbul, Turkey

466

Download English Version:

https://daneshyari.com/en/article/710681

Download Persian Version:

https://daneshyari.com/article/710681

Daneshyari.com

https://daneshyari.com/en/article/710681
https://daneshyari.com/article/710681
https://daneshyari.com

