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Abstract: In this paper, a coordinated-distributed model predictive control (MPC) scheme
is presented for large-scale discrete-time linear process systems. Coordinated-distributed MPC
control aims at enhancing the performance of fully decentralized MPC controllers by achieving
the plant-wide optimal operations. The ‘price-driven’ decomposition-coordination method is
used to adjust the operations of the individual processing units in order to satisfy an overall
plant performance objective. Newton’s method, together with a sensitivity analysis technique,
are used to efficiently update the price in the price-driven decomposition-coordination method.
The efficiency of the proposed control scheme is evaluated using a model of a fluid catalytic
cracking process.
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1. INTRODUCTION

Since the late seventies, the design of chemical processes
has evolved towards integrated operations that have in-
creased plant’s efficiency. The improvement in the design
of chemical processes included, among other things, energy
and mass integration, and the use of recycle streams. As
a result, processes became more complex and processing
units became more tightly interconnected. Control of such
integrated large-scale processes has been typically per-
formed with decentralized schemes because of the diffi-
culties in implementation and maintenance of centralized
control frameworks.

Centralized and decentralized control are two distinct con-
trol strategies. In centralized control, no real distinction
is made among processing units. The centralized control
framework is formulated as a monolithic control problem
that incorporates all process variables with no unit-level
decomposition. While a centralized strategy can lead to
optimal plant-wide performance, it presents some dis-
advantages (e.g., the large-dimensionality of the control
problem and lack of flexibility in terms of operation and
maintenance), which make centralized control unsuitable
for industrial processes. In decentralized control, each en-
gineering unit is optimized separately by neglecting the
interactions with the other units. The decentralized ap-
proach is the most commonly used in the industry because
of its robustness and its resiliency to systems failures.
Nevertheless, decentralized control does not generally lead
to the desired plant-wide optimal operations (Lu (2003);
Sun and El-Farra (2008)).
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A compromise between centralized and decentralized con-
trol is desired in order to improve plant operations. Dis-
tributed control has emerged as a promising control strat-
egy that can lead to the plant-wide optimal operations,
while keeping manageable controllers for each subunit
in the plant. In the distributed control framework, it is
assumed that each subsystem computes its own optimal
solution while considering all or certain degree of inter-
actions with the other subsystems. To attain the desired
control performance, information related to each subsys-
tems’ optimal solutions is generally exchanged among
the subsystems. In this work, we present a coordinated-
distributed model predictive control (CDMPC) framework
for constrained dynamic processes. In CDMPC control,
data is exchanged with each individual MPC controller
via a ‘coordinator’ or ‘master’.

1.1 Distributed MPC Control

Distributed MPC control has attracted the attention of
many researchers in recent years. Dunbar and Murray
(2004) formulated MPC platforms for nonlinear inter-
acting subsystems (multi-vehicle formations) whose state
variables are coupled in a single objective function. For lin-
ear interconnected systems, Venkat et al. (2005) proposed
a communication-based MPC that can converge to a Nash
equilibrium. The communication-based MPC was further
improved by a cooperation-based MPC that leads to the
Pareto optimal feasible solution. Cheng et al. (2008, 2007)
proposed a coordinated scheme for MPC steady state
target calculation based on Dantzig-Wolfe decomposition
and price-driven coordination methods, respectively.



The main contribution of this work is to propose the
price-driven decomposition-coordination algorithm, as de-
scribed in Cheng et al. (2007), for the control of con-
strained process systems whose dynamics are represented
by discrete-time models. The CDMPC control scheme
presented in this paper achieves the centralized optimal
operations and can be implemented when step-response
models are available for the process. Since our control
formulation uses models obtained from step-test data, it
does not need estimation of unavailable process variables
(as it might be required when formulating MPC controllers
based on state-space models). Furthermore, the proposed
CDMPC control scheme allows for bias correction in the
predicted outputs through feedback.

An illustration of CDMPC is shown in Fig. 1. The price-
driven decomposition-coordination method is used in the
formulation of the CDMPC controllers. In the price-driven
decomposition-coordination method, the coordinator sets
up a price, ‘p’, for the subsystems’ interacting variables
(Fig. 1). The price provided by the coordinator is then

Fig. 1. Illustration of CDMPC Control

adjusted to alter the subunits’ calculated control actions
towards the overall plant optimum. In this work, the price,
p, is updated based on Newton’s method. An iterative
procedure is established between the coordinator and the
subunits until the desired plant-wide optimal solution is
achieved.

2. CDMPC CONTROL FOR DYNAMIC PROCESS
SYSTEMS

In this section, the CDMPC control scheme is presented.
Since we consider the centralized performance as the ideal
benchmark, we begin the CDMPC control formulation
by decomposing the centralized control problem into N
smaller subproblems that are easier to solve. Then, an
efficient mechanism is used to achieve the same solution
as the one obtained in the centralized control problem.

2.1 Process Model

Consider the overall plant process, modelled by step-
response coefficients:

yz(k + l) =

T−1X
h=1

rX
w=1

Szw,h∆uw(k + l − h) +

rX
w=1

Szw,T uw(k + l − T ), (1)

∀z = 1, . . . ,m,

where yz (∀z = 1, ...,m) ∈ <m denote the process out-
puts; uw ∈ <r and ∆uw ∈ <r (∀w = 1, ..., r) denote the
manipulated variables and the change in the manipulated
variables, respectively. The coefficients S11,h, ..., Smr,h rep-
resent the step-response coefficients for hth time step. The
step-response weight S11,h is the coefficient between ∆u1

and output y1 for the hth time step. In a similar manner,
Smr,h is the coefficient between ∆ur and output ym for the
hth time step.

2.2 Centralized MPC Formulation

For the centralized MPC implementation, it is convenient
to arrange process model (1) in a matrix form as following:

Ŷ (k + 1) = S∆Û(k) + Y 0(k + 1) + D̂(k + 1), (2)
where the output variables, input variables and change in
input variables predicted along the prediction horizon Hp
and control horizon Hu are defined as:8>>>><>>>>:

Ŷ (k + 1) = [ŷ(k + 1|k)>, ..., ŷ(k +Hp|k)>]>,

ŷ(.) = [ŷ1(.), ..., ŷm(.)]>,

∆Û(k) = [∆û(k|k)>, ...,∆û(k +Hu − 1|k)>]>,

∆û(.) = [∆û1(.), ...,∆ûr(.)]
>, û(.) = [û1(.), ..., ûr(.)]

>.

(3)

The m×Hp vector of unforced responses Y 0(k + 1) is:(
Y 0(k + 1) = [y0(k + 1)>, ..., y0(k +Hp)>]>,

y0(.) = [y0
1(.), ..., y0

m(.)]>.
(4)

The vector D̂(k+1) has been incorporated in (2) to correct
through feedback the discrepancies between the measured
and predicted outputs. The vector D̂(k + 1) is defined as:

D̂(k + 1) = [Im, ..., Im]>| {z }
Hp times

[y(k)− ŷ(k|k − 1)],

where Im is the m×m identity matrix. It is assumed that
the difference between the measured and predicted outputs
at time k remains constant throughout the prediction
horizon.
In (2), the matrix of step-response coefficients S is defined
as:

S =

26666666664

S1 0 . . . 0
S2 S1 0 0
...

...
. . . 0

SHu
SHu−1 . . . S1

...
...

. . .
...

SHp
SHp−1 . . . SHp−Hu+1

37777777775
, (5)

where Sh is the m× r matrix of step-response coefficients
for the hth time step (∀h = 1, ..., Hp):

Sh =

264 S11,h S12,h . . . S1r,h
... . . . . . .

...
Sm1,h . . . . . . Smr,h

375 . (6)

The centralized MPC controller is formulated to mini-
mized the following objective function:
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