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Abstract: This work aims a stochastic approach for the calculation of robust anti-solvent addition policies for controlling the 
mean crystal size (MCS) in fed-batch crystallization operations. The proposed strategy is based-on a non-structured population 
balance where uncertainties associated with the start-up condition and random fluctuations along the fed-batch operation can 
be taken into account in a very natural fashion. We include and quantify the effect of the uncertainties by embedding a 
deterministic crystal growth model into a Fokker-Planck equation (FPE) resulting in a stochastic model for the MCS dynamics. 
This approach uses the Generalized Logistic equation (GLE) that has an adequate mathematical structure that suits the dynamic 
characteristic of the crystal growth. Thus, the numerical solution of the FPE provides the most likely MCS evolution for a 
given anti-solvent flow-rate. The effect of the anti-solvent is incorporated into the parameters of the FPE. The parameters of 
the FPE are computed as linear piece-wise interpolating functions of the anti-solvent flow-rate. The strategy uses a PID-like 
regulator in closed-loop fashion with the FPE to compute the anti-solvent addition flow-rates for different set-point targets in 
the MCS. In order to validate the stochastic model and assess the merits of the proposed strategy, the crystallization of sodium 
chloride in water using ethanol as anti-solvent is performed in a bench-scale fed-batch crystallizer. The implementation of the 
calculated anti-solvent policies resulted in a good control of the MCS despite modelling mismatch and uncertainties present 
during the crystallization operation.  
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1. INTRODUCTION 

The design of chemical plants endeavors to build equipment 
that preferably content hazards and make possible the 
transformation and separation of materials. It also attempts to 
harness the impact of apparently disordered and erratic 
phenomena (e.g. turbulent flow, pressure and temperature 
fluctuations, measurement noise, etc.). Fluctuations are a very 
common element in a large number of chemical, biological 
and physical phenomena. Practically, all systems are 
subjected to complicated external or internal influences that 
are not fully known and that are often termed noise or 
fluctuations. However, if a sufficiently long record of noisy 
measurement is analyzed, it may admit a statistical 
description. This means that it is possible to estimate the 
probability or likelihood that the process variable will attain 
in some specified range of values (Feigenbaum, 1980; 
Risken, 1984). 

The study of stochastic system as the Brownian motion 
resulted in the Fokker-Planck equation (FPE). The FPE is just 
an equation of motion for the distribution function of 
fluctuating macroscopic variables. The FPE deals with those 
fluctuations of systems which stem from many tiny 
disturbances, each of which changes the variables of the 
system in an unpredictable but small way. The FPE provides 
a powerful tool with which the effects of fluctuations close to 
transition points can be adequately treated and that the 
approaches based on FPE are superior to other approaches 

based on Langevin equations (LE). The FPE plays an 
important role in chemical and biological processes that 
involve noise. 

For many practical applications it is required to have 
simplified models that group the complexity behind a natural 
phenomenon and its interactions with its surroundings. For a 
dynamic system, it means of a set of deterministic differential 
equations with semi-empirical parameters. When studying 
chemical processes, these models are the core element for the 
design of all model-based control and optimization strategies. 
However, extra care is needed to take into account the no 
modeled dynamics and unknown exogenous disturbances 
acting on the process. The FPE is an interesting approach to 
introduce the robustness feature to the design of prediction, 
control and optimization tools. 

This work describes a novel stochastic approach for the 
robust prediction of the mean crystal size (MCS) in a bench-
scale fed-batch crystallization unit where anti-solvent is 
added to speed-up the crystal formation process. The crystal 
growth is modeled by a classic logistic equation of common 
use in theoretical ecology (May and McLean, 2007; Grosso et 
al., 2007). In a different fashion, the use of FPE for a 
monomer particle growth can be found in the literature 
(Matsoukas and Yulan, 2006). Unknown dynamics, internal 
and external fluctuations and sensitivity to initial conditions 
can be taken into account by embedding the logistic equation 
in the FPE. 



 
 

     

 

2. Mean Crystal Size Estimation for an Anti-Solvent 
Aided Crystallization Process 

Crystallization is a physical process for solid-liquid 
separation where the solid (solute) is dissolved in the solvent 
(liquid). The driving force in crystal formation is the super-
saturation. The super-saturation condition establishes the 
thermodynamic equilibrium for the solid-liquid separation 
and it can be affected by cooling and evaporation. The super-
saturation can be also induced by addition of precipitant or 
anti-solvent to the solution. The anti-solvent reduces the 
solubility of the solute in the original solvent resulting in 
super-saturation. The anti-solvent aided crystallization is an 
advantageous technique of separation where the solute is 
highly soluble or heat sensitive. 

2.1 Mathematical Model 

The development of rigorous mathematical models 
describing the dynamic of crystal growth in crystallization 
processes are based-on population balances. The idea of 
population balances has been widely used in theoretical 
ecology and extended to the modeling of particulate systems 
in chemical engineering. The population balances can be 
either structured or unstructured models.  
At the core of the structured population dynamics, the 
number of crystals in a fed-batch crystallizer is increased by 
nucleation and decreased by dissolution or breakage. 
Structured population balances models provide detailed 
information regarding the crystal size distribution in the 
crystallization unit. However, they demand a great deal of 
knowledge on the complex thermodynamic associated with 
the solute and solvent properties to be adequately 
incorporated in the population balances. Some important 
contributions in this subject have been reported in the 
literature (Worlitschek and Mazzotti, 2004; Nagy et al. 2007; 
Nowee et al., 2007). 

Here, we introduce a simple unstructured population model, 
where the crystals are classified by their size, L. The growth 
of each individual crystal is supposed to be independent by 
the other crystals and is governed by the same deterministic 
model. In order to take into account the growth fluctuations 
and the unknown dynamics not captured by the deterministic 
term, a random component can be introduced (Gelb, 1988). 
The stochastic model can thus be written as a Langevin 
equation of the following type: 
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In Equation 1, );L(f ϑ  is the expected rate of growth of L  

(the deterministic model introduced below), L  is the size of 
the single crystal, t  is the time, ϑ     is the vector parameter 
defined in the model, and )t(η is a random term assumed as 

Gaussian additive white noise: 
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Where D  is the additive noise intensity. Equation 1 implies 
that the crystal size L  behaves as a random variable, 
characterized by a certain probability density function (PDF) 

)t,L(w  depending on the state variables of the system, i.e. 

the size L  and time t . Incidentally, it should be noted that 
one can regard the probability density )t,L(w as the relative 

ratio of crystals having a given dimension L , in the limit of 
infinite observations. Thus, from a practical point of view, it 
coincides with the Particle Size Distribution experimentally 
observed. 

The new random variable thus can be described in terms of 
its probability density distribution, )t,L(w , at any instant of 

time t  and should follow the linear Fokker-Planck Equation, 
FPE: 
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along with the boundary conditions: 
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The reflecting boundary condition in Equation 4a ensures that 
the elements of the population will never assume negative 
values, whereas Equation 4b ensures the decay condition on 

)t,L(w as L goes to infinity, for any time. 

The diffusion coefficient D determines the random motion of 
the variable L that takes into account the fluctuation in the 
particle growth process (Randolph and Larson, 1988; Olesen 
et al, 2005). 

Regarding the deterministic part of the model, our purpose is 
to choose a model as simple as possible, with a parsimonious 
number of adjustable parameters. To this end, the 
Generalized Logistic equation (Tsoularis and Wallace, 2002), 
is possibly the best-known simple sigmoidal asymptotic 
function used to describe the time dependence of growth 
processes in an unstructured fashion: 
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In Equation 4, L is the size of the single crystal, the crystal 
growth rate r  and the equilibrium mean crystal size K  are 
considered constant for each experimental condition and they 
are supposed to be only dependent on the anti-solvent flow 
rate. Moreover, α , β   and γ  are positive real numbers that 

regulate the shape of the growing curve. Hereafter we will 
consider the simple case with 1=== γβα . With these 

assumptions, the present growth model can be regarded as the 
simplest model taking into account mild nonlinearities. In 
spite of this simplicity, this model provides the main 
qualitative features of a typical growth process: the growth 
follows a linear law at low crystal size values and saturates at 
a higher equilibrium value. 

Finally the evolution in time of the probability density is 
described in terms of a linear, partial differential equation 
depending on the parameters r  (linear Malthusian growth 
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