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(e-mail: yann.le.gorrec@ens2m.fr)

Abstract: This paper focuses on non linear control of non isothermal Continuous Stirred
Tank Reactors (CSTRs). The model of the CSTR is thermodynamically consistent in order
to apply the control strategy based on the concavity of the entropy function and the use of
thermodynamic availability as Lyapunov function. More precisely the stabilization problem of
continuous chemical reactors is addressed operated at an unstable open loop equilibrium point.
The chosen control variable is the jacket temperature. In this paper we propose a state feedback
strategy to insure asymptotic stability with physically admissible control variable solicitations.
Theoretical developments are illustrated on a first order chemical reaction.
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1. INTRODUCTION

Continuous Stirred Tank Reactors (CSTR) have been
widely studied in the literature with respect to process con-
trol design (Luyben (1990); Alvarez (1999); Hua (2000);
Guo (2001); Hoang (2008)). Numerous strategies have
been developed to control such non linear systems. Let
us cite for example: feedback linearization (Viel (1997))
for control under constraints, nonlinear PI control (Al-
varez (1999)), classical Lyapunov based control (Antonel-
lia (2003)), nonlinear adaptive control (Guo (2001)) and
more recently thermodynamical Lyapunov based control
(Hoang (2008)).

Besides these control problems, observation/estimation
strategies have been developed in the case of under sen-
sored CSTRs (Gibon-Fargeot (2000); Dochain (2009)).
Usually, the reactor temperature is the only on-line avail-
able measurement. Then the purpose is to estimate the
missing state variables that are used in the control strat-
egy.

In this paper we focus on the control purposes only and
we assume that concentrations and temperature are mea-
sured. This control synthesis is based on thermodynamic
concepts defined in Callen (1985) and more recently in
(Ruszkowski (2005); Ydstie (1997)) and (Hoang (2008)).
More precisely, we propose a Lyapunov based approach for
the stabilization of CSTR about unstable steady state as
in (Hoang (2008)). This is done thanks to the Lyapunov
function issued from thermodynamics consideration: the
availability function A (Ruszkowski (2005)).

In Hoang (2008), we proposed feedback laws involving
inlet and jacket temperatures as well as inlet flows. These
feedback laws were obtained by imposing that the time

derivative of the availability A remains negative, insuring
consequently the global asymptotic stability. However, no
care was given on the amplitude of the controls. Moreover
the temperature of the reactor had to be inverted and the
feedback laws had in some case some oscillatory behaviors
about the critical point.

The main contribution of this paper with respect to previ-
ous work (Hoang (2008)) is the redesign of the exponential
asymptotic controller in order to prevent excessive control
demand and oscillation problems. In this way the obtained
controller is practically more efficient. The price to pay
is that global asymptotic stability is obtained on some
validity domain only.

This paper is organized as follows: in section 2, we remind
thermodynamical concepts and variables necessary to con-
struct thermodynamic availability. This latter function is
the Lyapunov candidate of the method. In section 3 the
dynamic model of the considered CSTR is presented and
analyzed. Section 4 is devoted to the design of the state
feedback insuring asymptotic stability. Simulation results
are given in section 5. It is shown that the resulting control
leads to admissible manipulated control variables.

2. THERMODYNAMIC BASIS FOR AN
AVAILABILITY FUNCTION

Irreversible thermodynamics concept will play a leading
role in the methodology used for the design of the Lya-
punov function (Ruszkowski (2005); Hoang (2008)). In
this section we review the main ideas concerning this
thermodynamical approach and the construction of the
candidate Lyapunov function: the availability function in
the case of an homogeneous phase.



In equilibrium thermodynamics, the system variables are
divided into extensive and intensive variables, depending
on whether their values depend on the ”size” of the system
or not. The internal energy of a homogeneous system
is then expressed in terms of products of pairings of
energy conjugate variables such as pressure P/ volume V ,
temperature T/ entropy S and chemical potential μi/ mole
number ni for each species i of the mixture.

The fundamental relation of thermodynamics expresses
the entropy S of a given phase as a function of the so called
extensive variables Z = (U, V, ni) by the Gibbs equation:

dS =
1
T
dU +

P

T
dV +

nc∑
i=1

−μi

T
dni. (1)

It can also be written as:
dS = wT dZ (2)

with w = ( 1
T , P

T , −μi

T ).

Since the entropy S is an extensive variable, it is a
homogenous function of degree 1 of Z (Callen (1985)).
From Euler’s theorem we get:

S(Z) = wTZ (3)

Equation (2) can also be applied in irreversible thermody-
namics as soon as the local state equilibrium is assumed:
it postulates that the present state of the homogeneous
system in any evolution can be characterized by the same
variables as at equilibrium and is independent on the rate
of evolution. So (2) can also be applied at any time.

Moreover, it is well known that balance equations can be
established for Z= (U, V, ni) as well as for the entropy S
but this latter is not conservative: in irreversible thermo-
dynamics there is a source term σ which is always positive
from the the second law of thermodynamics. This term
represents the irreversible entropy production: the energy
Tσ associated to this term represents the energy lost from
material, space or thermal domains and that will never
more contribute to some physical works. As a consequence
of (2), the entropy balance can alternatively be written as:

dS

dt
= wT dZ

dt
(4)

Finally let us notice that for homogeneous thermodynam-
ical systems (one phase only), the entropy function S(Z)
is necessarily strictly concave (see Callen (1985)) as shown
in Fig. 1.

Fig. 1. Entropy and availability functions w. r. to Z.

From these observations, it can be shown (see Ydstie
(1997)) that the non negative function:

A(Z) = S2 + wT
2 (Z − Z2) − S(Z) ≥ 0 (5)

where Z2 is some fixed reference point (for example the
desired set point for control), is a measure of the dis-
tance between entropy S(Z) and its tangent plane passing
through Z2. It is geometrically presented in Fig. 1. The
slope of the tangent plane is related to intensive vector
w(Z) calculated at Z = Z2.

As soon as we consider homogeneous mixture, S remains
concave and then A remains also non negative. As a con-
sequence, A is a natural Lyapunov candidate. It remains
to build a feedback law to insure:

dA
dt

≤ 0. (6)

3. CASE STUDY: A NON ISOTHERMAL CSTR
MODEL

3.1 Assumptions of the model

We consider a jacketed homogeneous CSTR with the
following first-order chemical reaction: A → B. The
temperature of the jacket Tw is supposed to be uniform and
is used for the control purpose. The dynamics of the CSTR
is deduced from volume, material and energy balances.

The following assumptions are made:

• The fluid is incompressible and the reaction mixture
is supposed to be ideal.

• The two species are supposed to have the same partial
molar volume v.

• At the inlet of the reactor, the pure component A is
fed at temperature Te.

• The reaction volume V is supposed to be constant.
• The heat flow exchanged with the jacket is repre-

sented by Q̇ = λ(Tw − T ).
• The kinetics of the liquid phase reaction is modelled

thanks to the Arrhenius law. The reaction rate rv is
given by k0 exp(−k1

T )nA

V .

In Tables (1,2) are given the notations and numerical
values that will be used for modelling and simulation.
Finally let us notice that constant volume assumption

Notation unit
FAe mol/s Inlet molar flow rate of A
FA mol/s Outlet molar flow rate of A
FB mol/s Outlet molar flow rate of B
F mol/s Total outlet molar flow rate
hAe J/mol Inlet molar enthalpy of A
hi J/mol Molar enthalpy of species i (i = A, B)
H J Total enthalpy of the mixture
nA mol Mole number of species A
nB mol Mole number of species B
T K Temperature in the CSTR
nT mol Total mole number
rv mol/m3/s Reaction rate
U J Internal energy
xi = ni

nT
Molar fraction of species i, i = A, B

Table 1. Notation of the variables of the model.

implies that the total number of moles nT is constant
since the two species have the same partial molar volume.
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