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Abstract: Granulation is a multivariable process characterized by several physical attributes that are 
essential for product performance, such as granule size and size distribution. An optimally operated 
granulation process will yield, in a reproducible manner, product with tightly controlled performance 
attributes. In this paper predictive models of the dynamics of these key variables are developed using a 
dynamic partial least squares approach. The method, demonstrated here on process simulation as well as 
on an industrial mixer-granulator process, result in accurate predictions. These models motivate the 
development of model predictive controllers for these processes. 
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1. INTRODUCTION 

Granulation is a complex process in which many input 
variables influence many product properties. As Iveson et al. 
describe in a review paper (2001), the understanding of the 
fundamental processes that control granulation behavior and 
product properties have increased in recent years. This 
knowledge can be used during process design, in choosing 
the right formulation and operating conditions, and it can also 
be used to improve process control. Although many variables 
are set constant during process design, variations during 
production in input variables occur due to the variable nature 
of the powder feed. Even if all granule properties, except for 
size, are ignored for process control, a one dimensional 
granule size distribution can be constructed by multiple 
discrete output variables, in order to represent the shape of 
the distribution (these can be mean sizes (with coefficients of 
variation), percentile sizes, moments or size bins). Model 
Predictive Control (MPC) is an effective method to control 
such multiple input, multiple output processes (García, et al., 
1989). The majority of MPC applications in the chemical 
process industries utilize empirical models that are 
constructed from plant data. In this work, we explore the use 
of dynamic partial least squares to construct these empirical 
models. 

2. METHODS 

2.1  Partial Least Squares 

Partial Least Squares (PLS) methods have been demonstrated 
as a useful tool for analysis of data and modeling of the 
systems from which the data are collected (Kaspar and Ray, 
1993). Unlike related methods, such as Principal Component 

Analysis (PCA), which finds factors that capture the greatest 
amount of variance in the predictor (X) only, the PLS method 
attempts to find factors which both capture variance and 
achieve correlation. PLS handles this by projecting the 
information in high dimensional spaces (X,Y) down to low 
dimensional spaces defined by a small number of latent 
vectors (t1,t2…ta). These new latent vectors summarize all the 
important information contained in the original data sets, by 
representing the scaled and mean-centered values of  X and Y 
matrices as: 
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where the ti are latent (score) vectors calculated sequentially 
for each dimension i=1,2,…a. 

In the PLS method, the covariance between the linear 
combinations of X and the output measurement matrix Y is 
maximized at each iteration, using the vectors pi and qi which 
are the loading vectors whose elements express the 
contribution of each variable in X and Y toward defining the 
new latent vectors ti and ui. E and F are residual matrices for 
X and Y blocks, respectively. The optimal number of latent 
vectors retained in the model is often determined by cross-
validation (Dayal et al. 1994).  

In an industrial environment, it is more often the case that 
many of the predictor variables (X) are highly correlated with 
one another and their covariance matrix is nearly singular, 



 
 

     

 

which renders classical regression methods intractable. 
Reduced space methods such as PLS and PCA can overcome 
this problem (MacGregor and Kourti, 1995). PLS is also 
robust to measurement noise in the data and can be used in 
cases where there are random missing data and when the 
number of input variables is greater than the number of 
observations (Dayal et al. 1994). Various examples of the 
implementation of PLS analysis to industrial process 
modeling and control can be found in the literature (for 
example, Dayal et al., 1994, MacGregor and Kourti, 1995, 
and others). 

Process dynamics can be incorporated into the PLS model by 
including columns of lagged outputs and/or inputs into the 
predictor block (X) (Dayal et al., 1994, Kaspar and Ray, 
1993, Juricek et al. 2001). The resulting PLS model is 
actually an ARX type input-output model of the form: 
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where y denotes the output variable (e.g., median particle 
size, d50), and u denotes the manipulated variable (e.g., binder 
flow). The terms A and B contain the autoregressive and 
exogenous terms of the model, respectively. The 
autoregressive term captures dynamics through lagged terms 
of the output, and the exogenous term captures dynamics 
through lagged terms in the input. 

Once the models have been calculated from the plant data, it 
is useful to evaluate their properties using several key 
statistical measures. Some of the useful statistics that are 
associated with reduced space models (Wise et al. 2006) are 
outlined below: 

Q residual – is simply the sum of squares of each row of E 
(from eq. 1), i.e. for the ith sample in X, xi: 

T
iii eeQ �   (5) 

where ei is the ith row of E. The Q statistics is a measure of 
the difference between a sample and its projection into the a 
principal components retained in the model. 

Hotelling T2 is a measure of the variation in each sample 
within the model. Its value is the sum of normalized squared 
scores, defined by: 

T
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where ti are the score vectors (eq. 1) and � is a diagonal 
matrix containing the eigenvalues corresponding to a 
eigenvectors (principal components) retained in the model. 

Together, the T2 and Q residual statistics are useful in 
evaluating the fitness of a PLS model to specific data. It is 
possible to calculate statistically meaningful confidence 
limits for both cases. 

2.2  Simulation studies 

In our previous work, a nonlinear one dimensional population 
balance model (1D-PBM) was successfully used to model a 
laboratory continuous drum granulation process with fine 
particle recycle (Glaser et al., 2008). The same model is used 
here as a base for a process simulation (Figure 1) for a 
preliminary evaluation and sensitivity test of the applicability 
of the dynamic PLS modeling technique for granulation. 

 

Fig. 1. Simulator structure: five inputs are included in the 
simulator: binder spray rate, fine powder feed-rate, drum 
rotation-rate and the drum inclination angle. The model is 
divided into three well mixed drum compartments, each 
described by an individual set of ODEs, a retention time 
model and a set of global parameters that influence the 
model behavior (taken from Glaser 2008). 

Both particle median size (d50) and, separately, particle size 
distribution width (d84/d16) were used as output variables for 
this study. The predictor (X) was constructed from 4 
manipulated variables (solid feed flow rate, binder feed flow 
rate, drum rotation speed, recycle rate) and the computed 
recycle flow as an additional input variable. Process 
dynamics were incorporated into the X block by including 
columns of lagged output variables. The lag time was 
estimated using an autocorrelation function. Delay times of 
each of the input variables were estimated using cross 
correlation function, and the predictor matrix was adjusted 
according to the obtained delay vector. During the 
simulation, the 4 manipulated variables were randomly 
perturbed around their nominal values at steady state 
sequentially, i.e. input variables were perturbed one after the 
other in fixed time gaps. The resulting PLS-based ARX 
model’s short horizon predictive ability was tested by cross 
validation with a set of separately calculated simulation 
sequences with different excitation regimes. For each of these 
cross validation sequences, the root mean square error of the 
model based prediction (RMSEP), relative to the simulated 
plant measurements was calculated for a given short horizon 
period. In order to make a more representative quantification 
of the predicting ability of the model, the short horizon start 
point was moved along the time axis of the data one time step 
after another thus creating a set of RMSEP measures out of 
which an average and maximum RMSEP could be calculated. 
All variables were mean centered and scaled to unit variance 
prior to processing. 
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