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Abstract: In this article we present an “explicit RTO” approach for achieving optimal steady
state operation without requiring expensive online calculations. After identifying regions of
constant active constraints, it is shown that there exist some optimally invariant variable
combination for each region. If the unknown variables can be eliminated by measurements and
system equations, the invariant combinations can be used for control. Moreover, we show that
the measurement invariants can be used for detecting changes in the active set and for finding
the right region to switch to. This explicit RTO approach is applied to a CSTR described by a
set of rational equations. We show how the invariant variable combinations are derived, and use
polynomial reduction to eliminate the unknown variables to obtain the measurement invariants
which are used for control.
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1. INTRODUCTION

Optimal operation of chemical processes becomes increas-
ingly important in order to be able to compete in the
international markets and to minimize environmental im-
pact. A well established tool to achieve this goal is real-
time optimization (RTO), where the optimal set-points are
computed on-line, based on measurements taken at given
sample times. This involves setting up and maintaining a
real-time computation system, which can be very expen-
sive and time consuming.

An alternative approach is to use off-line calculations and
analysis to minimize or avoid complex on-line compu-
tations for example by finding optimally invariant mea-
surement combinations (’self-optimizing’ variable combi-
nations, (Narasimhan and Skogestad (2007)). Controlling
these combinations to their setpoints guarantees to operate
the process optimal or close to optimal, with a certain
acceptable loss (Skogestad (2000)). The combinations can
be controlled by a simple control structure based on PI
controllers. The conventional real-time optimization prob-
lem can either be replaced completely or partially by con-
trolling invariant variable combinations. In practice, many
processes are operated by something similar to this alter-
native approach, although not always consciously. That
is, the optimization problem is not formulated explicitly
and the control variables are chosen from experience and
engineering intuition.

This publication presents two main results. The first
one is extending the idea of self-optimizing control from
unconstrained linear problems to constrained nonlinear
problems. To the authors knowledge, optimally invariant
variable combinations have been considered systematically
only for linear plants with quadratic performance index
(see e.g. Alstad et al. (2009)). A second contribution is

the proof that using controlled variable to identify new
sets of active constraints will always identify the correct
active set. Although measurement invariants have been
used before for active set identification (Manum et al.
(2007)), it has not been proved that this holds for nonlinear
problems, too.

2. GENERAL PROCEDURE

We consider a plant at steady state and assume the plant
performance can be modelled as an optimization problem
with a performance index J together with equality and
inequality constraints, g(u,x,d) and h(u,x,d):

min
u,x

J s.t

{
g(u,x,d) = 0
h(u,x,d) ≤ 0

(1)

The variables u, x, d denote the manipulated input vari-
ables, the internal states, and the disturbance variables,
respectively. In addition, we assume that there are mea-
surements y(x,u,d), which provide information about the
internal states and the disturbances of the process.

In order to obtain optimal operation we do not optimize
the model on-line at given sample times. Instead, we use
the structure of the problem to find optimally invariant
variable combinations for the system. Since the available
number of degrees of freedom changes when an inequality
constraint becomes active, we have to find a new set
of invariant measurement combinations for each set of
constraints that becomes active during operation of the
plant. This makes it necessary to define separate control
structures for each region. Therefore, the first step is to
partition the operating space into regions defined by the
set of active constraints, i.e. the system is optimized for all
possible disturbances d and the active constraints in each
region are identified.



In the second step, we determine (nonlinear) variable
combinations which yield optimal operation when kept
at their constant setpoint. The variables resulting from
this step cannot be used for control directly, because they
contain unknown disturbance variables and internal states
which are not known. To be able to control the system, we
attempt to “model” the variable invariants by expressions
which only contain known variables. These can then be
used for control in feedback loops.

The last step in this procedure is to define rules for de-
tecting and switching regions when the active constraints
change. In many cases this can be done by monitoring
the controlled variables of the neighbouring region and
switching when the controlled variable of the neighbouring
region reaches its optimal value.

3. DETERMINING INVARIANT VARIABLE
COMBINATIONS

3.1 Invariants for systems with quadratic objective and
linear inequality constraints and linear measurements

To illustrate the idea of finding invariant variable combina-
tions we first consider a problem with a quadratic objective
and linear constraints. After having identified nr regions
of active constraints, we can define an equality constrained
optimization problem for each region.

Given z ∈ R
nz×1 and d ∈ R

nd×1, consider the constrained
optimization problem:

min
z

J = min
z

[zT dT]

[
Jzz Jzd

Jzd
T Jdd

] [
z
d

]
(2)

subject to

Azz + Add = Ã
[

z
d

]
= 0 (3)

where we have Az ∈ R
nc×nz has rank nc, Ad ∈ R

nc×nd ,
Ã = [AzAd], and Jzz > 0.

Eq. (3) may include the model equations as well as active
(equality) constraints. Instead of using (3) to eliminate
nc internal states to obtain an unconstrained problem,
we keep the constraints explicit in the formulation as
this more general formulation will be used later when
presenting the nonlinear case (where the internal states
are not easily substituted). The Karush-Kuhn-Tucker first
order optimality conditions give

∇zL = ∇zJ + AT
z λ = J̃

[
z
d

]
+ AT

z λ = 0, (4)

where J̃ = [Juu Jud], and λ is the vector of Lagrangian
multipliers. Therefore, from (4) we have that

AT
z λ = −J̃

[
z
d

]
. (5)

Az is not full column rank, so let Nz be a basis for the
null space of Az with dimension nDOF = nz − nc. Then
NT
z AT

z = 0, and at the optimum we must have

cv(z,d)
�

= NT
z J̃

[
z
d

]
= 0 (6)

for the system (5) to be uniquely solvable for λ. Keeping
cv(z,d) at zero (in addition to the active constraints), is

always optimal. However, it cannot be used for control
directly, as it contains unknown (unmeasured) variables.
For control, we need a function of measurements c(y),
such that the difference between the invariant and the
measurement combination is minimal. Here, we want to
“model” cv(z,d) perfectly, such that

c(y) = cv(z,d). (7)

Then controlling c(y) = 0 yields optimal operation. If we
have nz + nd independent linear measurements

y = Gy

[
z
d

]
, (8)

where Gy is invertible, we can use them with (6) to give

c(y) = NTJ̃ [Gy]−1y. (9)

However, note that we actually only need nz − nc +
nd = nDOF +nd measurements, since the model equations
(3) can be used to eliminate the constrained degrees of
freedom (internal states). This is shown in Appendix A.

Remark 1. In the unconstrained case, the optimal invari-
ant variable combination is simply the gradient, such that
we have c(y) = Hy = ∇uJ , and H = J̃ [G̃y]−1.

3.2 Invariants for polynomial and rational systems

An analog approach may be taken for obtaining invariant
variable combinations for more general systems described
by polynomials. Since rational equations can be trans-
formed into polynomials by multiplying with the common
denominator, the method is applicable to rational systems,
too.

Initially, all regions defined by constant active constraints
are determined. For each region we then have:

Theorem 1. (Nonlinear invariants). Given z,d as in sec-
tion 3.1, consider the nonlinear optimization problem

min
z

J(z,d) s.t gi(z,d) = 0, i = 1 . . . ng, (10)

and implicit measurement relations

mj(y, z,d) = 0 j = 1 . . . ny, (11)

where y is the measured variable. If the Jacobian
Az(z,d) = [∇zg] has full rank ng at the optimum through-
out the region, following holds:

(1) There exist nDOF = nz − ng independent invariant
variable combinations cv with

cv = [Nz(z,d)]
T
∇zJ(z,d), (12)

where Nz(z,d) denotes the null space of the Jacobian
of the active constraints g(z,d).

(2) If there exist polynomials αi(z,d) and βj(z,d), such
that element of cv can be expressed by

cv =
∑
i,j

(αi(z,d)gi(z,d) + βj(z,d)mj(y, z,d))+c(y),

(13)
then the term c(y) is the desired self-optimizing
variable which when controlled to zero yields optimal
operation.

Proof. Calculate the Jacobian of the constraints:

Az(z,d) =
[
[∇zg1(z,d)]T, · · · , [∇zgng

(z,d)]T
]T

(14)
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