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a b s t r a c t 

This paper provides a review of model predictive control (MPC) methods with active uncertainty learn- 

ing. System uncertainty poses a key theoretical and practical challenge in MPC, which can be aggravated 

when system uncertainty increases due to the time-varying nature of system dynamics. For uncertain 

systems with stochastic uncertainty, this paper presents the stochastic MPC (SMPC) problem in the 

dual control paradigm, where the control inputs to an uncertain system have a probing effect for active 

uncertainty learning and a directing effect for controlling the system dynamics. The complexity of the 

SMPC problem with dual control effect is described in connection to stochastic dynamic programming 

as well as Bayesian estimation for its output feedback implementation. Further, implicit and explicit dual 

control methods for approximating the receding-horizon control problem with dual control effect are 

surveyed and analyzed with the intent to discuss the key challenges and opportunities in SMPC with 

dual control effect. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Model predictive control (MPC), also known as receding- 

horizon control , has demonstrated exceptional success for the high- 

performance control of technical systems in a variety of applica- 

tions such as automotive applications, building climate control, mi- 

crogrids, process systems control, and robotics and vehicle path 

planning ( Lee, 2011; Mayne, 2014; Morari & Lee, 1999 ). The abil- 

ity to systematically cope with multivariable system dynamics and 

system constraints has made MPC an attractive optimal control 

strategy ( Morari & Lee, 1999 ). A key theoretical and practical chal- 

lenge in MPC, however, arises from handling system uncertainty 

� This paper was not presented at any IFAC meeting. 
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under closed loop. Even though MPC exhibits some degree of ro- 

bustness to sufficiently small uncertainties due to its receding- 

horizon implementation, a marginal robust performance may not 

be adequate in many practical situations. This consideration has 

led to development of robust MPC ( Bemporad & Morari, 1999; 

Mayne, 2014 ) and stochastic MPC (SMPC) ( Kouvaritakis & Cannon, 

2016; Mesbah, 2016 ) strategies that account for system uncertain- 

ties of, respectively, deterministic, bounded-set and probabilistic 

nature. SMPC is generally intended to guarantee robust stability 

and performance of the closed-loop system in a probabilistic sense 

by explicitly incorporating a probabilistic description of model un- 

certainty into an optimal control problem. Specifically, SMPC al- 

lows for handling system constraints probabilistically using chance 

constraints ( Mesbah, 2016 ). 

The MPC framework, however, cannot actively learn about the 

system uncertainty. In particular, the MPC framework is incapable 

https://doi.org/10.1016/j.arcontrol.2017.11.001 
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of proactively coping with system changes that may occur due to 

the time-varying nature of system dynamics, which can in turn 

increase uncertainty even more, leading to control performance 

degradation (e.g., see MacGregor and Cinar (2012) ; Mesbah, Bom- 

bois, Forgione, Hjalmarsson, and den Hof (2015) ; Patwardhan and 

Shah (2002) ; Qin (2012) ; Zagrobelny, Ji, and Rawlings (2013) for 

performance monitoring and diagnosis). Thus, active learning of 

system uncertainty and regular adaptation of uncertainty descrip- 

tions, via system re-identification ( Ljung, 1999 ) or Bayesian infer- 

ence ( Chen, 2003 ), in the optimal control problem is crucial for 

maintaining the MPC performance for uncertain systems. 

The problem of parametric model uncertainty in model- 

based control has inspired several important research direc- 

tions in the field of (stochastic) adaptive control , which gen- 

erally relies on the basic notion of regular model adaptation 

under closed loop (e.g., see Åström and Wittenmark (2008) ; 

Dumont and Huzmezan (2002) ; Filatov and Unbehauen (2004) ; 

Landau, Lozano, M’Saad, and Karimi (2011) ; Sastry and Bod- 

son (2011) ; Wittenmark (1995) ). Historically, adaptive control 

is based on the separation principle , which involves separation 

of parameter estimation/system identification and control design 

( Patchell & Jacobs, 1971; Witsenhausen, 1971 ). That is, a system 

model is first identified and, subsequently, used for designing a 

certainty equivalence (CE) controller, as if the model was an exact 

representation of the system ( Bar-Shalom & Tse, 1974 ). In optimal 

control, when the control cost function is quadratic and the sys- 

tem is linear in uncertain parameters that are Gaussian processes 

(i.e., linear-quadratic-Gaussian control), the separation principle is 

exact and the resulting deterministic optimal control law is equiv- 

alent to the stochastic optimal control law ( Stengel, 1986 ). How- 

ever, neither the separation principle is optimal for general sys- 

tems, nor the deterministic framework of CE control can account 

for the model uncertainty. These shortcomings can result in severe 

robustness problems in optimal control of uncertain systems such 

as the well-known bursting problem ( Anderson, 1985 ). 

Alternatively, explicit incorporation of model uncertainty into a 

control design problem leads to cautious control , that is, the control 

inputs will become small (cautious) when the uncertainty is large 

( Wittenmark, 1975b ). Cautious control action arises from predict- 

ing the impact of control inputs on the future system uncertainty. 

In the limiting case of a one-step-ahead predictor, however, cau- 

tious control can yield exceedingly small control inputs when the 

uncertainty grows. Small control inputs will in turn generate less 

information about the uncertain system and, consequently, the un- 

certainty will be increased further, eventually yielding zero con- 

trol inputs ( ̊Aström & Wittenmark, 1971 ). This is because, like CE 

control, the control inputs in cautious control do not have a prob- 

ing effect. Therefore, control inputs are only passively adaptive since 

uncertainty learning is accidental, merely due to the feedback ac- 

tion of the controller. 

The seminal work of Feldbaum was the first to recognize that 

control inputs to an uncertain system must have a probing effect for 

active learning of system uncertainty and a directing effect for con- 

trolling the system dynamics ( Feldbaum, 1960a,b, 1961a,b ). That is, 

control inputs should have the dual control effect of influencing not 

only the system states, but also the uncertainty associated with the 

states ( Bar-Shalom & Tse, 1974 ). The dual control paradigm pro- 

vides a unified framework for stochastic optimal control and model 

uncertainty handling. Dual control maintains an optimal balance 

(in the sense of the principle of optimality ( Bellman, 1957 )) be- 

tween the probing activity and control activity of control inputs, 

which are naturally in conflict. This arises from systematically ac- 

counting for the possibility of poor transient control performance 

due to probing in order to achieve improved control performance 

in future because of reduced system uncertainty. Despite its con- 

ceptually appealing features, dual control relies on stochastic dy- 

namic programing (DP) ( Bellman, 1957 ), which is computationally 

intractable even for moderately-sized systems ( ̊Aström & Witten- 

mark, 2008 ). To address the computational complexity of dual con- 

trol, various approximate solutions have been proposed that can be 

broadly categorized into ( Filatov & Unbehauen, 20 0 0) : (i) implicit 

dual control that involves direct approximation of the stochastic DP 

problem and (ii) explicit dual control that involves reformulation of 

the dual control problem into a tractable optimal control problem 

with some form of heuristic-based probing effect for active uncer- 

tainty learning. 

The main objective of this paper is to provide a comprehen- 

sive review of receding-horizon control methods with active un- 

certainty learning. First, the SMPC problem with dual control ef- 

fect is presented, which naturally incorporates system probing and 

output feedback to enhance the information content of system ob- 

servations for stochastic uncertainty handling ( Section 2 ). The com- 

plexity of the SMPC problem with dual control effect is discussed 

in light of different classes of control inputs and their relation to 

solution of Bellman equation for stochastic DP ( Section 3 ). Implicit 

and explicit dual control methods for approximating the receding- 

horizon control problem with dual control effect are then surveyed 

( Section 4 ). The paper is intended to provide the reader with an 

impression of the key theoretical issues in receding-horizon control 

with dual control effect without undue mathematical complexity. 

Notation. R and N = { 1 , 2 , . . . } denote the sets of real and nat- 

ural numbers, respectively; N 0 = N ∪ { 0 } . (�, F , P ) denotes a prob- 

ability space, where random variables are F -measurable functions 

of ω that is a generic element of the sample space �, F is the σ - 

algebra of sets in �, and P is the probability measure on F . P [ ·|·] 
denotes the conditional probability. 

2. SMPC With dual control effect 

Consider a discrete-time, uncertain system 

x k +1 = f (x k , u k , w k , θ ) , (1a) 

y k = h (x k , v k ) , (1b) 

where k ∈ N 0 is the time index; x k ∈ R 

n x , u k ∈ R 

n u , and y k ∈ R 

n y 

denote the system states, inputs, and outputs, respectively; θ ∈ R 

n θ

denotes the system parameters; w k ∈ R 

n w denotes stochastic pro- 

cess noise; v k ∈ R 

n v denotes measurement noise; and f : R 

n x ×
R 

n u × R 

n w × R 

n θ → R 

n x and h : R 

n x × R 

n v → R 

n y are (possibly non- 

linear) system state and output equations, respectively. 1 The uncer- 

tain initial states x 0 are described by the known probability distri- 

bution function (pdf) P [ x 0 ] . The random noise sequences { w k } and 

{ v k } over different time instants are generated based on the known 

probability distributions P [ w ] and P [ v ] , respectively. The random 

variables x 0 , { w k }, and { v l } are mutually independent on their re- 

spective probability space (�, F , P ) for all k, l ≥ 0. 2 

When the parameters θ are known, the system (1) represents 

a Markov decision process ( Kumar & Varaiya, 2016 ). Let I k denote 

the vector of system information that is causally available at time 

k 

I k := [ y k , . . . , y 0 , u k −1 , . . . , u 0 ] , 

with I 0 := [ y 0 ] . Define hyperstate ξ k | k as the conditional probabil- 

ity of states x k given I k , i.e., ξk | k := P [ x k |I k ] . Hyperstate describes 

1 The problem of model structure uncertainty is not considered in this paper; see 

Heirung and Mesbah (2017) . 
2 The treatment of the stochastic optimal control problem in this paper does 

not consider temporally correlated stochastic noise. Non-white stochastic noise se- 

quences can be handled through the application of a whitening filter (e.g., see 

Lewis, Xie, & Popa (2008) ). 
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