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a b s t r a c t 

This paper puts forward the comparative performances for synchronisation between (i) systems from 

different chaotic system families, (ii) systems from the Unified Chaotic System (UCS) family, (iii) a hy- 

perchaotic and a chaotic systems and (iv) identical chaotic systems. Three different well-known control 

techniques, i.e. Nonlinear Active Control (NAC), Sliding Mode Control (SMC) and Adaptive Control (AC) 

are used for synchronisation between various pairs of chaotic and/or hyperchaotic systems. Performances 

of NAC, SMC and AC techniques are investigated and compared with synchronisation of different pairs 

of chaotic systems based on the error dynamics and required control inputs. The integral square error 

and required control energy measures are considered for comparison. Finally, a generalised view on the 

use of the control techniques for synchronisation is finally proposed. Moreover, a new chaotic system is 

proposed and its qualitative analysis is done to illustrate the chaotic behaviour of the system. The new 

system is used as an example of synchronisation. MATLAB simulation results are presented which reflect 

the successful achievement of the objectives. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Synchronisation of chaotic systems has been extensively studied 

in the last three decades. The study of synchronisation is well iden- 

tified by the work of Pecora and Carroll in year 1990. In this paper, 

two chaotic systems with different initial conditions are synchro- 

nised. Many chaotic systems and their synchronisation are stud- 

ied in the variety of applications in the different field of science, 

engineering and technology such as Biology, Physics, Chemistry, 

Mathematics, Electrical, Mechanical, Electronics engineering ( Chen 

& Dong, 1998 ), etc. Recently, synchronisation is being studied in 

the field of fractional dynamics ( Borah & Roy, 2017; Borah, Singh, 

& Roy, 2016; Shukla & Sharma, 2017a; 2017b; Singh & Roy, 2014; 

2016 ), complex nonlinear systems ( Wei, Moroz, Sprott, Akgul, & 

Zhang, 2017; Wei, Moroz, Sprott, Wang, & Zhang, 2017 ) for secure 

communications ( Mahmoud, Mahmoud, & Arafa, 2013a; 2013b; 

2017 ). Simultaneously, during 2011, a new classification of chaotic 

dynamics has been introduced ( Leonov, Kuznetsov, & Vagaitsev, 

2011; 2012 ). According to this, there are two types of attractors: 

self-excitepd attractor and hidden attractor. A self-excitepd attrac- 

tor has a basin of attraction that is excited from unstable equilibria. 
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In contrast, a hidden attractor has a basin of attraction which does 

not contain neighborhoods of equilibria. Hidden attractors are im- 

portant in engineering applications because they allow unexpected 

and potentially disastropus responses to perturbations in a struc- 

ture like a bridge or an airplane wing. Recently, findings in the 

field of hidden attractors about synchronisation ( Dudkowski et al., 

2016; Jafari, Pham, & Kapitaniak, 2016; Jafari & Sprott, 2013; Ja- 

fari, Sprott, & Golpayegani, 2013; Jafari, Sprott, & Nazarimehr, 2015; 

Leonov et al., 2011; 2012; Pham, Jafari, Volos, & Kapitaniak, 2017; 

Pham, Vaidyanathan, Volos, & Jafari, 2015; Singh & Roy, 2017a; 

2017b; 2017c; Singh, Roy, & Jafari, 2018; Wei, Moroz, Sprott, Akgul, 

& Zhang, 2017; Wei, Moroz, Sprott, Wang, & Zhang, 2017; Wei, Yu, 

Zhang, & Yao, 2015; Wei & Zhang, 2014; Wei, Zhang, Wang, & Yao, 

2015; Wei, Zhang, & Yao, 2015 ) is attracting great interest. 

Synchronisation between two chaotic systems can be clas- 

sified in two categories. One is synchronisation between topo- 

logically equivalent chaotic systems and other is synchronisa- 

tion between topologically non-equivalent or different ( Hou, Kang, 

Kong, Chen, & Yan, 2003 ) chaotic systems. Two chaotic systems 

are said to be topologically equivalence if there is a homomor- 

phism, mapping orbits of one chaotic system to orbits of other 

chaotic system homomorphically and preserving orientation of 

the orbits, otherwise topologically non-equivalent. Synchronisation 

between various topologically equivalent chaotic systems using 

NAC, SMC and AC techniques has been studied in the literature 

https://doi.org/10.1016/j.arcontrol.2018.03.003 

1367-5788/© 2018 Published by Elsevier Ltd. 

Please cite this article as: P.P. Singh, B.K. Roy, Comparative performances of synchronisation between different classes of chaotic systems 

using three control techniques, Annual Reviews in Control (2018), https://doi.org/10.1016/j.arcontrol.2018.03.003 

https://doi.org/10.1016/j.arcontrol.2018.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
mailto:piyushpratapsingh@gmail.com
mailto:bkr_nits@yahoo.co.in
https://doi.org/10.1016/j.arcontrol.2018.03.003
https://doi.org/10.1016/j.arcontrol.2018.03.003


2 P.P. Singh, B.K. Roy / Annual Reviews in Control 0 0 0 (2018) 1–14 

ARTICLE IN PRESS 

JID: JARAP [m5G; April 6, 2018;15:26 ] 

Table 1 

Literature review on different control techniques. 

Nonlinear active control Sliding mode control Adaptive control 

Rossler and Chen chaotic systems ( Agiza & 

Yassen, 2001 ) 

Duffing and Van der Pol oscillators ( Salarieh & 

Alasty, 2009 ) 

hyperchaotic Chen systems ( Park, 2005 ) 

The novel and Lorenz chaotic systems ( Chen, 2005 ) Chen and Lorenz chaotic systems ( Liu, 2011 ) hyperchaotic Lu systems ( Elabbasy et al., 2006 ) 

Duffing system and chaotic pendulum ( Lei et al., 

2006 ) 

Lorenz-Chen, Chen-Lorenz, Liu-Lorenz chaotic 

systems ( Pourmahmood et al., 2011 ) 

novel hyperchaotic systems derived from the Chen 

system ( Gao et al., 2007 ) 

Li and Cai systems ( Sundarapandian, 2011b ) Lu and Genesio-Tesi systems ( Jawaada et al., 2012a ) novel chaotic systems derived from the Rossler 

system ( Zhou et al., 2008 ) 

Lorenz and Pehlivan systems 

( Sundarapandian, 2011c ) 

Lorenz and Chen systems ( Jawaada, Noorani, & 

Al-sawalha, 2012b ) 

unified chaotic systems ( Yu, 2008 ) 

Genesio and Nuclear spin generator systems 

( Khan, 2012b ) 

Qi and Liu chaotic systems ( Sundarapandian & 

Sampath, 2012 ) 

novel chaotic systems derived from Lorenz family 

( Li et al., 2010 ) 

Windmi and Coullet chaotic systems 

( Sundarapandian & Rasappan, 2013 ) 

Wang-Chen chaotic systems 

( Sundarapandian, 2012b ) 

hyperchaotic Rossler systems ( Dimassi & 

Loria, 2011 ) 

Lu and Rossler systems ( Emadzadeh & Haeri, 2005 ) Lorenz and Chen systems ( Jawaada et al., 2012b ) Newton-Leipnik systems ( Khan, 2012a ) 

Lorenz and Lu systems, Lorenz and Chen systems 

( Li & Zhou, 2007 ) 

Qi and Liu chaotic systems ( Sundarapandian & 

Sampath, 2012 ) 

novel chaotic systems derived from Lorenz family 

( El-Dessoky & Yassen, 2012 ) 

Genesio and Rossler systems ( Li et al., 2008 ) Wang-Chen chaotic systems 

( Sundarapandian, 2012b ) 

Lorenz and Chen systems ( Zhang et al., 2006 ) 

Lu and Lorenz systems ( Al-sawalha & 

Noorani, 2009b ) 

Lorenz-Stenflo and Chen systems ( Huang, 2008 ) 

hyperchaotic Chen and Lu systems ( Al-sawalha & 

Noorani, 2009a ) 

Two different novel hyperchaotic systems 

( Zhu, 2009 ) 

hyperchaotic Liu and hyperchaotic Qi systems 

( Sundarapandian, 2011a ) 

hyperchaotic Chen and Second- Harmonic 

Generator (SHG) ( Wu & Zhang, 2009 ) 

hyperchaotic Lorenz and hyperchaotic Lu systems 

( Al-sawalha & Al-Dababseh, 2011 ) 

Lu and Lorenz-Stenflo hyperchaotic systems 

( Olusola, 2012 ) 

hyperchaotic Bao and hyperchaotic Xu systems 

( Sundarapandian, 2012a ) 

Genesio-Tesi and Li, Li and Lorenz chaotic systems 

( Srivastava et al., 2013 ) 

hyperchaotic Lorenz and hyperchaotic Chen 

systems ( Sundarapandian & Karthikeyan, 2011 ) 

Arneodo and Rossler systems ( Sundarapandian & 

Rasappan, 2012 ), 

( Agiza & Yassen, 2001; Al-sawalha & Al-Dababseh, 2011; Al- 

sawalha & Noorani, 20 09a; 20 09b; Dimassi & Loria, 2011; Elab- 

basy, Agiza, & El-Dessoky, 2006; Gao, Chen, Yuan, & Yu, 2007; 

Huang, 2008; Jawaada, Noorani, & Al-sawalha, 2012a; 2012b; 

Khan, 2012b; Lei, Xu, Shen, & Fang, 2006; Li, Chen, & Zhiping, 

2008; Li, Leung, Liu, Han, & Chu, 2010; Liu, 2011; Olusola, 2012; 

Park, 2005; Pourmahmood, Khanmohammadi, & Alizadeh, 2011; 

Salarieh & Alasty, 2009; Srivastava, Agrawal, & Das, 2013; Sun- 

darapandian, 2011a; 2011b; 2011c; 2012a; 2012b; Sundarapandian 

& Karthikeyan, 2011; Sundarapandian & Rasappan, 2012; 2013; 

Sundarapandian & Sampath, 2012; Wu & Zhang, 20 09; Yu, 20 08; 

Zhang, Huang, Wang & Chai, 2006; Zhou, Wu, Li, & Xue, 2008; Zhu, 

2009 ). Therefore, synchronisation of topologically different chaotic 

systems is considered in this paper. 

Synchronisation between many pairs of chaotic systems is stud- 

ied in the literature, where pairs of the chaotic systems are from 

the UCS family. The literature survey for the synchronisation us- 

ing nonlinear active control (NAC), sliding mode control (SMC) and 

adaptive control (AC) is summarised in Table 1 . Synchronisation of 

two chaotic systems is mostly reported using either of these three 

control techniques. The justification of choosing a control tech- 

nique is not discussed in these papers. 

Some recent findings as in the paper ( Cao, Ho, & Yang, 2009 ), 

projective synchronisation of a Lorenz chaotic system family is 

investigated. The drive and response systems are synchronised 

within a desired scaling factor using an impulsive control tech- 

nique. The stability analysis of the impulsive functional differential 

equations derives sufficient conditions. The synchronisation phe- 

nomenon in a network model is studied in Cheng and Cao (2011) . 

A feedback control technique is used to achieve synchronisation 

of the complex networks. Rossler chaotic system is considered at 

each node of the complex network. The obtained result reveals that 

the synchronisation is accomplished for growing chaotic network 

model. The proposed method enhances the synchronizability of 

the complex model. The paper ( Feng & Cao, 2013 ) investigates the 

global exponential synchronisation of Chua chaotic systems by de- 

signing a novel impulsive controller. The novel impulsive controller, 

a combination of present and past states of errors, is a modification 

of the normal impulsive control technique. Global exponential sta- 

bility criterion is derived for the error system by using impulsive 

differential equations and differential inequalities. Synchronisation 

of switched and delay chaotic neural networks with interval pa- 

rameters uncertainty is investigated in Cao, Alofi, Al-Mazrooei, and 

Elaiw (2013) . Error dynamics is derived based on the theories of 

the switched systems and drive-response technique. Without con- 

structing Lyapunov–Krasovskii functions, a matrix measure method 

is used for the first time to switched time-varying delay networks. 

Synchronisation criteria are derived using Halanay inequality tech- 

nique for switched interval networks. In the paper ( Chen, Cao, 

Qiu, Alsaedi, & Alsaadi, 2016 ), synchronisation of multiple chaotic 

systems with unknown parameters using adaptive control method 

is proposed. Two different synchronisation modes are considered. 

One is that more response systems synchronize with one drive sys- 

tem, Lorenz system is drive and two Lu chaotic systems are consid- 

ered as response systems. Other is the ring transmission synchro- 

nisation, which guarantees that all chaotic systems can synchro- 

nize with each other. Two hyperchaotic Chen and one hyperchaotic 

Rossler are considered within the ring structure. Finite-time gener- 

alised synchronisation problem of drive-response systems is dis- 

cussed in Bao and Cao (2016) . The finite-time generalised synchro- 
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