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a b s t r a c t 

A novel modelling framework is proposed for the analysis of aggregative games on an infinite-time hori- 

zon, assuming that players are subject to heterogeneous periodic constraints. A new aggregative equilib- 

rium notion is presented and the strategic behaviour of the agents is analysed under a receding horizon 

paradigm. The evolution of the strategies predicted and implemented by the players over time is mod- 

elled through a discrete-time multi-valued dynamical system. By considering Lyapunov stability notions 

and applying limit and invariance results for set-valued correspondences, necessary conditions are de- 

rived for convergence of a receding horizon map to a periodic equilibrium of the aggregative game. This 

result is achieved for any (feasible) initial condition, thus ensuring implicit adaptivity of the proposed 

control framework to real-time variations in the number and parameters of players. Design and imple- 

mentation of the proposed control strategy are discussed and an example of distributed control for data 

routing is presented, evaluating its performance in simulation. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

This work studies the interactions between self-interested 

agents that autonomously pursue their individual benefit. It is sup- 

posed that the pay-off of the single agent is exclusively a function 

of its strategy and of the overall population behaviour. These sce- 

narios are usually described as aggregative games ( Jensen, 2010; 

Kukushkin, 2004 ), which have been recently applied in multiple 

contexts, including economics, power systems and transportation 

networks. Most of the studies in this area have focused on charac- 

terizing the game equilibria and devising distributed control strate- 

gies for the agents’ coordination that ensure convergence and (pos- 

sibly) global optimality. 

The proposed analyses have mostly considered a static setting, 

with all the agents operating over the same finite-time horizon. 

This modelling framework does not fully capture realistic scenar- 

ios where the constraints and preferences of the agents, and pos- 

sibly the size of the population, are expected to vary over time. 

Furthermore, due to the cyclic nature of most economic, indus- 

trial, and social processes, a periodic operation can be an essential 

factor in pursuing optimal economical performance ( Angeli, Amrit, 

& Rawlings, 2012; Huang, Harinath, & Biegler, 2011; Limón et al., 

2016; Müller & Grüne, 2016; Zanon, Gros, & Diehl, 2013 ). How- 

ever, a static framework cannot account for multiple agents that 

repeatedly perform heterogeneous tasks over time, as this cannot 

be meaningfully incorporated in a single limited time frame. To the 

best of the authors’ knowledge, this is the first paper that tries 

to tackle these current limitations in the literature, extending the 

analysis of aggregative games to a periodic infinite-time horizon, 

proposing a receding horizon scheme for the distributed coordina- 

tion of the agents and deriving analytical conditions for its conver- 

gence to equilibrium. 

The remaining part of this introduction contains an overview 

on the state of the art for aggregative games and receding horizon 

control schemes. In addition, it summarizes the main contributions 

of the paper. Section 2 details the chosen modelling framework for 

infinite-horizon aggregative games with periodic constraints and 

characterizes the associated equilibria. Section 3 presents the pro- 

posed receding horizon scheme and derives sufficient conditions 

for feasibility and convergence to equilibrium of better-response 

coordination algorithms. Finally, Section 4 presents a possible ap- 

plication of the proposed scheme to a data routing problem and 

Section 5 contains some conclusive remarks. 

1.1. Relevant work – aggregative games and distributed coordination 

schemes 

Noncooperative Nash games in which the objective function of 

a single player depends exclusively on its strategy and on some ag- 

gregation of all players’ strategies have been considered in multiple 

papers. Although this aggregation typically reduces to some linear 

function of the population strategy, much broader definitions are 

allowed ( Jensen, 2010 ). In addition to theoretical works that inves- 

tigate existence and uniqueness of Nash equilibria in aggregative 

games ( Dindos & Mezzetti, 20 06; Kukushkin, 20 04; Martimort & 

Stole, 2011 ), many applications and studies have been proposed in 

the area of economics ( Cornes & Hartley, 2005; Novshek, 1985 ), 

communication networks ( Altman, Boulogne, El-Azouzi, Jiménez, & 

Wynter, 2006; Ba ̧s ar, 2007 ), network congestion ( Alpcan & Ba ̧s ar, 

2005; Barrera & Garcia, 2015; Gentile, Parise, Paccagnan, Kam- 

garpour, & Lygeros, 2017 ) and power systems ( Chen, Li, Louie, & 

Vucetic, 2014; De Paola, Angeli, & Strbac, 2017b; Ma, Callaway, & 

Hiskens, 2013 ). Several studies have recently analysed aggregative 

games within the context of mean field theory ( Huang, Caines, & 

Malhamé, 2007; Lasry & Lions, 2007 ). Research has not only fo- 

cused on theoretical characterizations of the equilibrium as the 

population size tends to infinity, but it has also considered the 

design of decentralized control schemes ( Bauso & Pesenti, 2013; 

Grammatico, Parise, Colombino, & Lygeros, 2016; Nourian, Caines, 

Malhame, & Huang, 2013 ), with specific applications in several 

engineering-related areas ( Djehiche, Tcheukam, & Tembine, 2017 ), 

specifically power grids ( Bagagiolo & Bauso, 2014; De Paola, An- 

geli, & Strbac, 2016 ), crowd dynamics ( Aurell & Djehiche, 2018; 

Lachapelle & Wolfram, 2011 ) and economics ( Lachapelle, Salomon, 

& Turinici, 2010 ). Further research has considered the related 

framework of population games, characterizing the evolutionary 

dynamics of infinitely large collections of interacting agents ( Fox 

& Shamma, 2013; Quijano et al., 2017; Sandholm, 2010 ). 

In the context of aggregative games, increasing interest has 

been directed towards the development of distributed coordina- 

tion mechanisms with suitable convergence properties. Specific 

classes of games show an intrinsic convex structure which facili- 

tates the design and analysis of noncooperative response schemes 

( Belgioioso & Grammatico, 2017a; Fox & Shamma, 2013; Hofbauer 

& Sandholm, 2009; Marden, Arslan, & Shamma, 2009 ). The well- 

established convergence properties of these games are exploited, 

for example, by Candogan, Ozdaglar, and Parrilo (2013) for char- 

acterizing the limiting behaviour of general Nash games in terms 

of their distance from a closer potential game. Different individual 

improvement paths have been considered in the literature, ranging 

from best-response ( Jensen, 2010; Kukushkin, 2004 ) to other more 

general (possibly stochastic) strategy revision trajectories ( Dindos 

& Mezzetti, 2006; Kukushkin, 2010; Lahkar, 2017; Poveda, Brown, 

Marden, & Teel, 2017 ). Other standard techniques include gradient- 

based schemes ( Grammatico et al., 2016 ) and variational inequality 

formulations ( Belgioioso & Grammatico, 2017b; Scutari, Palomar, 

Facchinei, & Pang, 2010 ). Current research is also focusing on the 

problem of coupling constraints ( Grammatico, 2017a ). 

Two main architectures for the implementation of these mech- 

anisms can be distinguished. In one case, agents iteratively mod- 

ify their strategy in response to an updated aggregated signal ( De 

Paola, Angeli, & Strbac, 2017a; Gan, Topcu, & Low, 2013; Koshal, 

Nedi ́c, & Shanbhag, 2010 ). An alternative setup with a higher 

degree of decentralization—suitable whenever an aggregate sig- 

nal broadcast is not available to the agents—adopts consensus- 

based techniques. In this case, the problem is addressed through 

the more general set up of network games, which include an 

underlying game topology and characterize the agents’ interac- 

tions through a graph ( Koshal, Nedi ́c, & Shanbhag, 2016; Parise 

& Ozdaglar, 2017 ). Each agent independently modifies its strat- 

egy (either synchronously or asynchronously) according to an es- 

timate of the aggregate signal, based on local information ex- 

change ( Gharesifard, Ba ̧s ar, & Domínguez-García, 2016; Gram- 

matico, 2017b; Ye & Hu, 2017 ). 

1.2. Relevant work – dynamic environment and receding horizon 

control 

Most of the aforementioned works on distributed coordina- 

tion of the players in an aggregative game consider a finite- 

time horizon and a static set up. To the best of our knowl- 

edge, there is a limited number of studies that have expanded 

this modelling framework in order to consider a dynamic envi- 

ronment or explicitly account for cyclic operation. In economics, 
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