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a b s t r a c t 

In order to perform various tasks using a robot in a real environment, it is necessary to learn the tasks 

based on recognition, to be able to derive a task sequence suitable for the situation, and to be able to 

generate a behavior adaptively. To deal with this issue, this paper proposes a system for realizing task in- 

telligence having a memory module motivated by human episodic memory, and a task planning module 

to resolve the current situation. In addition, this paper proposes a technique that can modify demon- 

strated trajectories according to current robot states and recognized target positions in order to perform 

the determined task sequence, as well as a technique that can generate the modified trajectory with- 

out collisions with surrounding obstacles. The effectiveness and applicability of the task intelligence are 

demonstrated through experiments with Mybot, a humanoid robot developed in the Robot Intelligence 

Technology Laboratory at KAIST. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

With ongoing advances of robot technology, various types of 

robots are being used in the home environment and industrial 

field. The purposes of the robots are mainly to perform work on 

behalf of a person or to provide convenient service to a person. 

However, most of the robots that have been developed to date are 

focused on providing a single service. Therefore, it is important to 

study robot task intelligence, which not only allows the provision 

of various services, but also allows robots to learn task sequences 

by themselves ( Beetz et al., 2012; Jeong et al., 2017 ). In order to re- 

alize task intelligence for robots, it utilizes various artificial intel- 

ligence technologies, such as vision-based recognition, robot con- 

trol, memory-based task sequence learning, adaptive task sequence 

planning, motion planning, and so on. 

Task intelligence has been researched mainly to conduct fixed 

task sequences ( Aboaf, Drucker, & Atkeson, 1989; Beetz et al., 2011; 

Bollini, Tellex, Thompson, Roy, & Rus, 2013 ), or to perform plan- 

ning of sequences to achieve goal states in a symbolical man- 

ner ( Beetz et al., 2012 ). Beetz et al. devised a web-based se- 

quence retrieval system to make a pancake ( Beetz et al., 2011 ), and 

Bollini et al. developed a cooking robot that can interpret recipes 

( Bollini et al., 2013 ). Furthermore, in order to learn various tasks, 

Jeong et al. designed a task intelligence architecture using a neu- 

ral model-based memory module to memorize behavior sequences. 

However, these approaches having a fixed sequence for a certain 

task are not robust to a changeable environment due to a lack 

of consideration of the working environment. To solve this prob- 

lem, Beetz et al. presented a cognitive mechanism that incorpo- 

rates learning, reasoning, and planning for realization of task in- 

telligence ( Beetz et al., 2012 ). In addition, Misra et al. developed a 

robot having the capability to understand user’s instructions in the 

form of natural language and to generate task sequences consid- 

ering the working environment ( Misra, Sung, Lee, & Saxena, 2016 ). 

For the adaptive task sequence generation, it is necessary to define 

actions, objects, and state changes for each action in a symbolic 

form. However, there is a disadvantage that defining all actions and 

all possible states is not scalable. In this light, Kim et al. designed 

a memory-based task intelligence architecture by fusing the task 

planner to generate the adaptive task sequences ( Kim, Baek, Cho, 

& Kim, 2016 ). In their research, the task sequences are learned by 

a neural network-based memory module, and appropriate action 

sequences are added according to the situation. 

In order to realize task intelligence, a capability to generate 

adaptive behaviors for a surrounding environment is necessary. 

In the field of robotics, the research for a precise manipulation 

for a high degrees-of-freedom (DoF) arm have been conducted 

( Park, Lee, Cho, Hong, & Kim, 2012 ), and the learning method of 

human-demonstrated trajectories for a specific manipulation task 

has mainly been studied ( Jain, Sharma, Joachims, & Saxena, 2015; 

Sung, Jin, & Saxena, 2015 ). In this regard, Jain et al. presented a 

learning method of preferences for manipulation tasks ( Jain et al., 

2015 ). Through their research, preference-based manipulation by 

giving a users feedback could be possible without demonstrations 

for entire manipulations to obtain optimal trajectories. Sung et al. 

developed a robot that can make a coffee by using transferred 

manipulation trajectories for unknown object parts ( Sung et al., 

2015 ). In their research, the manipulation trajectories for a part 

of an object were learned from a crowd-sourcing demonstration 

of a virtual reality, and the trajectories for an unknown object 

part could be retrieved by searching similar parts in pre-learned 

objects. However, these approaches are not suitable for an en- 

vironment having complex obstacles, because collision avoidance 

is not considered in their work. To consider the collision avoid- 

ance, MoveIt package, which can generate collision-free trajectories 

based on the open motion planning library (OMPL) ( Moll, Ş ucan, & 

Kavraki, 2015; Ş ucan, Moll, & Kavraki, 2012 ) by using an OctoMap 

( Hornung, Wurm, Bennewitz, Stachniss, & Burgard, 2013 ), has been 

used in many robot applications ( Chitta, Sucan, & Cousins, 2012 ). 

A sampling-based motion planning approach of the OMPL is of- 

ten used to generate the collision-free trajectory to reach a tar- 

get pose or to follow target trajectory. For using this package, the 

problems to solve the trajectories for each manipulation should be 

pre-programed. Due to this pre-programming, the sampling-based 

motion planning approach is not scalable. 

In this paper, we propose a novel task intelligence system for 

service robots having a capability to generate adaptive behaviors in 

a surrounding environment. First, in the proposed task intelligence, 

the surrounding environment is perceived by using a vision sensor. 

In reality, robust recognition is important to extract stable infor- 

mation for objects to be manipulated. In this regard, we propose 

a robust perception method based on an RGB-D sensor. Further- 

more, this paper uses the Deep ART network module to store and 

retrieve task sequences ( Park, Kim, Yoo, & Kim, 2017 ). The Deep 

ART network, of which function is similar to that of the episodic 

memory of humans, can memorize task sequences from human 

demonstrations. The memorized task sequences are retrieved from 

the Deep ART network by an input cue to perform an associated 

task. A task planner, such as fast-forward (FF) planner, is used to 

follow the task sequences retrieved from the Deep ART network 

module, because there is a mismatch between the learned envi- 

ronment and the current environment. In order to perform each 

determined task sequence, this paper proposes an adaptive behav- 

ior generation method depending on a geometrical environment. 

The proposed behavior generation method enables scalable behav- 

ior learning and collision-free manipulation. 

This paper is organized as follows: Section 2 describes the pro- 

posed task intelligence system in detail. To verify the effectiveness 

of the proposed system, experimental environments and scenar- 

ios are presented, and the experimental results are discussed in 

Section 3 . Finally, concluding remarks follow in Section 4 . 

2. Task intelligence 

This paper proposes a task intelligence system for performing 

the task sequences demonstrated by a user in an unstructured en- 

vironment. The task intelligence system is based on the intelligent 

operating architecture (iOA) that is used to realize a general intel- 

ligence of robots ( Kim, Choi, Park, & Zaheer, 2013 ). The iOA imi- 

tates the basic functions of the human brain in robot aspects. It 

consists of perception, memory, reasoning, internal state, and exe- 

cution parts. This paper focuses on the architecture for performing 

tasks as services to users. The proposed task intelligence system 

is shown in Fig. 1 . First, environment information (objects, con- 

texts) around the robot is obtained from the vision sensor attached 

to the robot. The context information represents state information 

of the object (fillable, baked, etc.) and state information between 

the objects (graspable, reachable, etc.). The recognized information 

is used for the episodic memory, task planner, and behavior gen- 

eration modules. When an instruction is given to the robot, the 

episodic memory module retrieves task sequences based on the 

recognized information. However, the learning environment and 

the actual environment may be different; for example, there are 

no objects that are needed, or the target objects are covered by 
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