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ARTICLE INFO ABSTRACT
Artic{e history: Modern Robust Control has had two distinct lines of development: (a) Robustness through quadratic opti-
Received 7 December 2016 mization and (b) Robustness under parametric uncertainty. The first approach consists of Kalman's Linear

Revised 23 March 2017
Accepted 1 May 2017
Available online xxx

Quadratic Regulator and H., optimal control. The second approach is the focus of this overview paper. It
provides an account of both analysis as well as synthesis based results. This line of results was sparked
by the appearance of Kharitonov’s Theorem in the early1980s. This result was rapidly followed by fur-
2010 MSC: ther results on the stability of polytopes of polynomials such as the Edge Theorem and the General-
93D05 ized Kharitonov Theorem, stability of systems under norm bounded perturbations and the computation
of parametric stability margins. Many of these analysis results established extremal testing sets where
stability or performance would breakdown. Starting in 1997, when it was established that high order
Gain and phase margin controllers were fragile, attention turned to the synthesis and design of the parameters of low order
Quadratic optimization controllers such as three term controllers and more particularly Proportional-Integral-Derivative (PID)
PID control controllers. An extensive theory of design of such systems has developed in the last twenty years. We
provide a summary without proofs, of many of these results.
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1. Introduction

Robustness of a system, the subject of this article, is its ability
to remain functional despite large changes. In control engineering,
robustness has played a central and pivotal role, since its begin-
ning in the 1860s. Thus Black’s feedback amplifier (Kline, 1993),
the Nyquist criterion (Nyquist, 1932), and gain and phase margins
Bode (1945) were concepts dealing directly with robustness in the
classical period.

Starting in 1960, the focus of control engineers shifted to op-
timization. However, the adequacy of an optimal design was ul-
timately judged by its robustness. Kalman’s Linear Quadratic Op-
timal Regulator (Kalman, 1959) was found to be deficient when
measured by its ability to deliver stability margins under out-
put feedback (Doyle & Stein, 1979). The remedy proposed was
high order H., control (Doyle, Glover, Khargonekar, & Francis,
1989). In 1997, (Keel & Bhattacharyya, 1997) it was shown that
even these controllers, and indeed all high order controllers, were
fragile. This led of a renewed interest in direct studies on ro-
bustness resulting in a body of knowledge known as the para-
metric theory (Ackermann, 2012; Barmish & Jury, 1994; Bhat-
tacharyya, Chapellat, & Keel, 1995; Bhattacharyya, 1987). This the-
ory has two components: analysis and synthesis. The present pa-
per gives an overview account of the analysis results, Kharitonov’s
theorem and its generalization (Chapellat & Bhattacharyya, 1989;
Kharitonov, 1978), the Edge theorem (Bartlett, Hollot, & Lin, 1988),
and related results as well as recent results on the paramet-
ric theory of synthesis and design (Bhattacharyya et al., 1995)
of Proportional-Integral-Derivative (PID) controllers, Datta, Ho, and
Bhattacharyya (2013), Silva, Datta, and Bhattacharyya (2007), Diaz-

Rodriguez, Oliveira, and Bhattacharyya (2015), Diaz-Rodriguez and
Bhattacharyya (2015).

1.1. Quadratic optimization and robustness

In Kalman et al. (1960) introduced the state-variable approach
and quadratic optimal control in the time-domain as new design
approaches. This phase in the theory of automatic control systems
arose out of the important new technological problems that were
encountered at that time: the launching, maneuvering, guidance
and tracking of space vehicles. A lot of effort was expended and
rapid developments in both theory and practice took place. Op-
timal control theory was developed under the influence of many
great researchers such as Pontryagin, Bellman, Kalman and Bucy.
In the 1960s, Kalman introduced a number of key state-variable
concepts. Among these were controllability, observability, optimal
linear-quadratic regulator (LQR), state-feedback and optimal state
estimation (Kalman filtering).

The optimal state feedback control produced by the LQR prob-
lem was guaranteed to be stabilizing for any quadratic perfor-
mance index subject to mild conditions.

In a 1964 paper by Kalman (1964) which demonstrated that for
SISO (single input-single output) systems the optimal LQR state-
feedback control laws had some very strong guaranteed robust-
ness properties, namely an infinite upper gain margin and a 60 °
phase margin, which in addition were independent of the partic-
ular quadratic index chosen. This is illustrated in Fig. 1 where the
state feedback system designed via LQR optimal control has the
above guaranteed stability margins at the loop breaking point “m”.
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