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a b s t r a c t 

This paper gives a summary of a body of work at the intersection of control theory and smooth nonlinear 

dynamics. The main idea is to transfer the concept of uniform hyperbolicity, central to the theory of 

smooth dynamical systems, to control-affine systems. Combining the strength of geometric control theory 

and the hyperbolic theory of dynamical systems, it is possible to deduce control-theoretic results of non- 

local nature that reveal remarkable analogies to the classical hyperbolic theory of dynamical systems. 

This includes results on controllability, robustness, and practical stabilizability in a networked control 

framework. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The concept of uniform hyperbolicity, introduced in the 1960s 

by Stephen Smale, has become a cornerstone for the hyperbolic 

theory of dynamical systems, developed in the ensuing decades. 

This concept, which axiomatizes the geometric picture behind the 

horseshoe map and other complex systems, has been successfully 

generalized in various directions not long after its introduction to 

analyze a broad variety of systems (e.g., to non-uniform hyperbol- 

icity, partial hyperbolicity and dominated splittings). A uniformly 

hyperbolic (discrete-time) system is essentially characterized by 

the fact that the linearization along any of its orbits behaves like 

a linear operator without eigenvalues on the unit circle, i.e., by a 

splitting of each tangent space into a direct sum of a stable and 

an unstable ‘eigenspace’. The uniformity is expressed by a uni- 

form estimate on the contraction and expansion rates. We refer to 

Hasselblatt (2002) for a comprehensive survey of results related to 

hyperbolic dynamical systems. 

Uniform hyperbolicity and its generalizations also occur quite 

naturally in nonlinear control systems, which calls for a systematic 

transfer of the methods developed for the analysis of hyperbolic 

dynamical systems to control systems in order to gain new insights 

in control-theoretic problems. However, so far not much effort has 

been put into the development of a ‘hyperbolic control theory’. The 

aim of this paper is to provide a survey of the existing results, 

which show that a combination of techniques from geometric con- 
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trol theory and the uniformly hyperbolic theory of dynamical sys- 

tems can lead to deep insights about global and semiglobal prop- 

erties of control-affine systems with a compact and convex control 

range. 

These results are grounded on the topological theory of 

Colonius and Kliemann (20 0 0) which provides an approach to un- 

derstanding the global controllability structure of control systems. 

Two central notions of this theory are control and chain control 

sets. Control sets are the maximal regions of complete approximate 

controllability in the state space. The definition of chain control 

sets involves the concept of ε-chains (also called ε-pseudo-orbits) 

from the theory of dynamical systems. The main motivation for the 

concept of chain control sets comes from the facts that (i) chain 

control sets are outer approximations of control sets and (ii) chain 

control sets in general are easier to determine than control sets 

(both analytically and numerically). 

As examples show, chain control sets can support uniformly hy- 

perbolic and, more generally, partially hyperbolic structures. For 

instance, every chain control set of a control-affine system on a 

flag manifold of a noncompact real semisimple Lie group, induced 

by a right-invariant system on the group, admits a partially hy- 

perbolic structure, i.e., an invariant splitting of the tangent bundle 

into a stable, an unstable and a central subbundle. The paper ( Da 

Silva & Kawan, 2016b ) provides a complete classification of those 

chain control sets on flag manifolds which are uniformly hyper- 

bolic, using extensively the semigroup theory developed by San 

Martin and co-workers ( Barros & San Martin, 2007; San Martin, 

1998; San Martin & Seco, 2010; San Martin & Tonelli, 1995 ). An- 

other way how a uniformly hyperbolic chain control set can arise is 
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by adding sufficiently small control terms to an uncontrolled equa- 

tion with a uniformly hyperbolic chain transitive set. In this case, 

the uniformly hyperbolic invariant set blows up to a uniformly hy- 

perbolic chain control set, cf., Colonius and Du (2001) . 

In the case of a uniformly hyperbolic chain control set, tools 

from the theory of smooth dynamical systems have been be ap- 

plied to analyze controllability and robustness properties. In partic- 

ular, it has been proved that a uniformly hyperbolic chain control 

set is the closure of a control set under the assumption of local ac- 

cessibility, cf. Colonius and Du (2001) . As a consequence, complete 

controllability holds on the interior of the chain control set and 

the chain control set varies continuously in the Hausdorff metric 

in dependence on system parameters. 

Another control application of uniformly hyperbolic theory 

concerns the problem of practical stabilization under information 

constraints. Stabilization problems involving a communication 

channel of finite capacity which provides the controller with state 

information, have been studied by many authors (see, e.g., the sur- 

vey ( Nair, Fagnani, Zampieri, & Evans, 2007 ) and the monographs 

( Kawan, 2013; Matveev & Savkin, 2009; Yüksel & Ba ̧s ar, 2013 )). 

The main theoretical problem here is to determine the smallest 

capacity above which the stabilization objective can be achieved. 

For practical stabilization in the sense of rendering a compact 

subset Q of the state space invariant, the notion of invariance 

entropy h inv ( Q ) was introduced in Colonius and Kawan (2009) as a 

measure for the associated critical channel capacity. This quantity 

measures the exponential complexity of the control task of keep- 

ing the system inside Q . In Da Silva and Kawan (2016c) a formula 

for the invariance entropy h inv ( Q ) of a uniformly hyperbolic chain 

control set Q has been derived in terms of unstable volume growth 

rates along trajectories in Q . The proof of this formula in particular 

reveals the interesting fact that in order to make Q invariant 

with a capacity arbitrarily close to h inv ( Q ), control strategies that 

stabilize a periodic orbit in Q are as good as any other strategy, 

thus this class of strategies is optimal. 

The paper ( Colonius & Lettau, 2016 ) gives an application of this 

result to a problem related with a continuously stirred tank re- 

actor. Moreover, the paper ( Da & Kawan, 2016a ) shows that the 

invariance entropy of uniformly hyperbolic chain control sets de- 

pends continuously on system parameters. 

In the following Sections 2 –7 , we explain these results in 

greater detail. In Section 8 , we give a brief account of the related 

subjects known as ‘control of chaos’ and ‘partial chaos’, and in 

Section 9 we outline some problems and ideas for future research. 

Notation: We write cl A and int A for the closure and the interior 

of a set A , respectively. If M is a smooth manifold, we write T x M for 

the tangent space to M at x , and TM for the tangent bundle of M . If 

f : M → N is a smooth map between manifolds, D f ( x ): T x M → T f ( x ) N 

denotes its derivative at x ∈ M . 

2. Control sets and chain control sets 

A control-affine system is governed by differential equations of 

the form 

� : ˙ x (t) = f 0 (x (t)) + 

m ∑ 

i =1 

u i (t) f i (x (t)) , u ∈ U , (1) 

where x ( t ) lives on a Riemannian manifold M (the state space) and 

U is the set of admissible control functions, which we assume to 

be of the form U = L ∞ (R , U) with U ⊂ R 

m being a compact and 

convex set with 0 ∈ int U . Assuming that f 0 , f 1 , . . . , f m 

are C 1 -vector 

fields and that the unique solution ϕ( t, x, u ) for the initial value 

x at time t 0 = 0 and the control u exists for all t ∈ R , regardless 

of (u, x ) ∈ U × M, we obtain a skew-product flow (i.e., a flow of 

triangular structure) 

�t (u, x ) = (θt u, ϕ(t, x, u )) , t ∈ R , 

that acts on the extended state space U × M. Here 

θt u = u (t + ·) , θt : U → U , t ∈ R , 

denotes the shift flow on U . With the weak ∗-topology of 

L ∞ (R , R 

m ) = L 1 (R , R 

m ) ∗, U becomes a compact metrizable space 

and � a continuous flow, called the control flow of �. We write 

ϕ t,u = ϕ(t, ·, u ) . 
A control set of � is a subset D ⊂ M such that 

(i) for every x ∈ D there is u ∈ U with ϕ(R + , x, u ) ⊂ D, 

(ii) for all x, y ∈ D and every neighborhood N of y there are 

u ∈ U and T > 0 with ϕ( T, x, u ) ∈ N (i.e., approximate con- 

trollability holds on D ), and 

(iii) D is maximal with (i) and (ii) in the sense of set inclusion. 

A chain control set E ⊂ M is a set such that 

(i) for every x ∈ E there is u ∈ U with ϕ(R , x, u ) ⊂ E, 

(ii) for all x, y ∈ E and ε, T > 0 there are n ∈ N , u 0 , . . . , u n −1 ∈ 

U , x = x 0 , x 1 , . . . , x n = y and t 0 , t 1 , . . . , t n −1 ≥ T such that 

d(ϕ(t i , x i , u i ) , x i +1 ) < ε for i = 0 , 1 , . . . , n − 1 , and 

(iii) E is maximal with (i) and (ii) in the sense of set inclusion. 

Before we proceed, for the convenience of the reader, we 

explain the concept of chain transitivity used in the topological 

theory of dynamical systems to analyze recurrence properties (see 

also Colonius and Kliemann (20 0 0 , Appendix B)). If φ : R × X → X

is a continuous flow on a metric space ( X, d ), a set A ⊂ X is called 

chain transitive if for all x, y ∈ A and ε, T > 0 there exists an ( ε, T ) - 

chain from x to y , i.e., there are n ∈ N , points x = x 0 , x 1 , . . . , x n = y, 

and times t 0 , t 1 , . . . , t n −1 ≥ T so that d(φ(t i , x i ) , x i +1 ) < ε for 

i = 0 , . . . , n − 1 . A point x ∈ X is called chain recurrent if for all ε, 

T > 0 there is an ( ε, T )-chain from x to x . If X is compact, then 

the set R ( φ) of all chain recurrent points is closed and invariant. 

Moreover, the connected components of R ( φ) are precisely the 

maximal invariant chain transitive sets and are called chain recur- 

rent components . The chain recurrent set essentially contains all 

relevant dynamical information of the flow. For instance, all α- 

and ω-limit set are contained in R ( φ). 

Now we consider again the control-affine system (1) . The lift of 

a chain control set E is defined by 

E := { (u, x ) ∈ U × M : ϕ(R , x, u ) ⊂ E } . 
It is a maximal invariant chain transitive set of the control flow, 

hence a chain recurrent component if M is compact. If � is locally 

accessible and D is a control set with nonempty interior, then D is 

contained in a chain control set (which is unique, since different 

chain control sets are disjoint). In general, chain control sets are 

closed, while control sets are neither open nor closed except when 

they are invariant in backward or forward time, respectively. 

A chain control set E is uniformly hyperbolic without center bun- 

dle if it is compact and for every (u, x ) ∈ E there exists a splitting 

T x M = E −u,x � E + u,x 

into linear subspaces such that 

(i) D ϕ t,u (x ) E ±u,x = E ±
�t (u,x ) 

for all t ∈ R and (u, x ) ∈ E, and 

(ii) there are constants c, λ > 0 such that for all ( u; x ) ∈ ε, 

| D ϕ t,u (x ) v | ≤ c −1 e −λt | v | for all t ≥ 0 , v ∈ E −u,x 

and 

| D ϕ t,u (x ) v | ≥ ce λt | v | for all t ≥ 0 , v ∈ E + u,x . 

This definition is independent of the Riemannian metric, how- 

ever, the constant c depends on the choice of the metric. From 

the two conditions it automatically follows that the subspaces E ±u,x 

change continuously with ( u, x ), cf. Kawan (2013 , Chapter 6). 
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