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a b s t r a c t 

Among the existing global challenges, water system management is becoming more and more important 

as the consumption patterns are continually growing. The implication of water system regulation in ir- 

rigated agriculture and production of sustainable energy is self-evident nowadays. In the present paper, 

new perspectives are given on the control of water flowing in an open channel. Mathematically, these 

physical processes are described by coupled hyperbolic partial differential equations (PDEs). In view of 

the recent development in PDE control, backstepping methodology has been proven to be a powerful 

tool in the sense that it provides a systematic design technique. This paper presents the exponential 

stabilization results of two shallow wave systems including the shallow waves of two unmixed fluids. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The management of water resource involves innumerable en- 

vironmental and economic challenges of major concern, among 

which one can mention water management sustainability, inten- 

sively irrigated agriculture, flooding phenomena, production of re- 

newable and sustainable energy through hydropower plants. Sev- 
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eral effort s have been deployed during the last decades, to repre- 

sent water management systems as dynamic systems that have the 

ability to predict consistently water resource evolution over time. 

From a cohesive perspective, water management systems are com- 

plexly integrated, some of which take into account the increasing 

demand of hydropower that has tremendous implications for the 

evolution of ecosystems ( Winz, Brierley, & Trowsdale, 2009 ), and 

may even consist of conflicting sub-systems. For instance, to deal 

water-related problems that occurs in a complex network of open- 

channels consisting of 

• nodes without storage capacity and nodes with storage capacity 

such as lakes and reservoirs with infiltration and evaporation, 

• channels as river reaches as well as canals, ditches and inter- 

basin transfers, 

• consumptive demands such as irrigated zones or municipal and 

industrial, 

(Andreu, Capilla, & Sanchis 1996) developed a generalized decision- 

support system (DSS) for water-resources planning and operational 

management known as AQUATOOL. 

The dynamics of open-channel hydraulic systems can be mod- 

eled by nonlinear coupled first-order PDEs, derived from the 

conservation of mass and momentum. For instance, estuaries 

( Horrevoets, Savenije, Schuurman, & Graas, 2004 ), rivers ( Saint- 

Venant, 1871 ), irrigation canals ( Malaterre, Rogers, & Schuur- 

mans, 1998 ), overland flow ( Tayfur, Kavvas, Govindaraju, & Storm, 

1993; Wang, Chen, Boll, Stockle, & McCool, 2002 ), lake hydrody- 

namics ( Zhao, Shen, Lai, & III, 1996 ) as well as coastal circula- 

tion ( Bouchut, Fernández-Nieto, Mangeney, & Narbona-Reina, 2016; 

Broche, Salomon, Demaistre, & Devenon, 1986 ) are described by 

shallow water dynamic equations also called as Saint-Venant equa- 

tions, neglecting the lateral movement of the water and assuming 

a constant velocity over the cross-section of an open channel. 

The problematic of designing control tools to reinforce the reg- 

ulation of the water level and the flow rate in open-channel hy- 

draulic systems has a long history and is still driving the atten- 

tion of researchers due to its challenging aspects. The controllers 

are usually actuated by adjusting the inflow and the outflow at 

the two boundaries of the channel. More precisely, changes in the 

volume of a canal pool connected to an upstream reservoir and a 

downstream reservoir occur when opening gates are actuated to 

vary the inflow and the outflow at the two channel boundaries. 

Earlier attempts of controller designs consider the approxi- 

mation of the linearized shallow water equations in the fre- 

quency domain as finite-dimensional systems in the spatial co- 

ordinate ( Corriga, Fanni, Sanna, & Usai, 1982; Corriga, Salimbeni, 

Sanna, & Usai, 1988; Corriga, Sanna, & Usai, 1983; 1984; Schu- 

urmans, Bosgra, & Brouwer, 1995; Shand, 1971 ). For example in 

Corriga et al. (1988) , the solutions to the resulting set of ordi- 

nary differential equations are given by a distributed transfer ma- 

trix relating both the water depth and the water flow discharge at 

any point in the canal pool to upstream and downstream bound- 

ary discharges. Based on these solutions typically given in an an- 

alytical closed-loop form, some lumped parameter models equiv- 

alent to constant volume control models can then be constructed 

by accounting for the delay introduced by the wave propagation 

through two boundaries, enabling the design of simple linear state- 

feedback controllers. However, all these efforts are based on a non- 

realistic assumption that the system transfer matrices are uniform 

with respect to the spatial variable. Indeed, due to the intrinsi- 

cally nonuniform transfer matrices, such methods are not actually 

enabling to reduce the complexity of the original control prob- 

lem. Based on the method of characteristics, proportional bound- 

ary feedback controllers are successfully designed to cancel the os- 

cillating modes induced by the reflection of propagating waves on 

the boundaries of the water pool ( Litrico & Fromion, 2006 ). 

Originating from an attempt to deal with a wave equation 

in Greenberg and Li (1984) , more sophisticated controller de- 

signs for the shallow water systems are considered, which are 

based on stability analysis of the distributed parameter mod- 

els ( Coron, de Halleux, Bastin, & Novel, 2002 ; de Halleux & 

Bastin, 2002 ; de Halleux, Prieur, Coron, d’Andréa Novel, & Bastin, 

2003 ; Prieur, Winkin, & Bastin, 2008 ; Santos & Prieur, 2008 ). Par- 

ticularly in Santos and Prieur (2008) , a boundary feedback con- 

troller is obtained through a direct analysis of the coupled nonlin- 

ear Saint-Venant equations subject to some perturbations such as 

frictions. The control performance has been tested successfully us- 

ing the experimental data of the Sambre river, Belgium and an ex- 

perimental test bed located in Valence, France. This control frame- 

work has then been generalized in Li (1994) for higher order sys- 

tems. 

A major improvement for the stabilization of shallow water 

equations has been driven by the application of Lyapunov-based 

control techniques to a one-dimensional Saint-Venant model. As 

stated in Coron, d’Andréa Novel, and Bastin (1999) , for a segment, 

which is of irrigation channel described by Saint-Venant equa- 

tions with two underflow gates at its boundaries, the total en- 

ergy of the system is not a suitable Lyapunov candidate. Alterna- 

tively, the authors constructed an entropy-based Lyapunov func- 

tion in this same paper, which achieved asymptotic stabilization of 

the shallow water equations with appropriate upstream and down- 

stream boundary control actions. Since then, systematic Lyapunov- 

based techniques are used towards achieving efficient controlling 

of shallow water waves, i.e., the stabilization for coupled systems 

of one-dimensional hyperbolic PDEs through boundary controllers 

( Bastin & Coron, 2016 ). Later on, it was generalized to a “net- 

work of systems of conservation laws” in Bastin, Haut, Coron, and 

d’Andréa Novel (2007) and further improved in Coron, Novel, and 

Bastin (2007) for systems of conservation laws that can be di- 

agonalized with Riemann Invariants with the introduction of a 

strict Lyapunov function by choosing properly the boundary con- 

trol action (see also Tchousso, Besson, & Xu, 2009; Xu & Sal- 

let, 2002 for a class of symmetric linear hyperbolic systems). As 

a result, Coron et al. (2007) achieved the regulation of the wa- 

ter level and flow in a horizontal open channel, and an exten- 

sion of the design methodology allows the stabilization of sloping 

irrigation channels with an arbitrary number of cascading pools 

( Bastin, Coron, & d’Andréa Novel, 2009 ). 

Various other methods have proven to be effective to en- 

sure stability of such water driven fluvial processes. Some ex- 

amples are, the proportional-integral boundary feedback con- 

troller presented in Santos, Bastin, Coron, and Novel (2008) , 

Xu and Sallet (1999) and Bastin, Coron, and Tamasoiu (2015) (note 

that a generalization ( Xu & Sallet, 1999 ) for linear hyperbolic 

systems can be found in Xu and Sallet (2014) ), the infinite- 

dimensional linear matrix inequalities (LMI)-based design pro- 

posed in Diagne, Santos, and Rodrigues (2010) and Santos, Ro- 

drigues, and Diagne (2008) , and the proportional integral boundary 

feedback controller in Santos, Wu, and Rodrigues (2014) . 

Recently, a more complicated shallow water equation involv- 

ing sediment dynamics has also been investigated. Such dynam- 

ics called as Exner equation represents the transport of the sed- 

iment in a water flow in the case where the sediment moves 

predominantly as bedload ( Bastin & Coron, 2016 , Page 25). Ex- 

ponential stabilization is achieved for coupled linearized Saint- 

Venant–Exner models that are hyperbolic PDE systems by employ- 

ing various methodologies such as a singular perturbation ap- 

proach ( Tang, Prieur, & Girard, 2014 ), explicit boundary dissipative 

conditions ( Diagne, Bastin, & Coron, 2012 ), the ISS-Lyapunov func- 

tion for time-varying hyperbolic systems ( Prieur & Mazenc, 2012 ), 

and the backstepping technique ( Diagne, Diagne, Tang, & Krstic, 

2017 ). Among these approaches, backstepping is, to the best of our 
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