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Abstract: We introduce two new error bounds for the reduced-basis method. Existing error
bounds for parabolic problems can be classified as either space time or time stepping. Space-time
bounds are much more costly and often become unpractical. The cheaper times-stepping bounds
have always failed to adequately represent the dynamics of systems containing noncoercive
operators. As a result they have always produced extremely pessimistic bounds. Our new bounds
are time-stepping bounds that make use of the Lyapunov stability theory to better capture the
dynamics of the system.
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1. INTRODUCTION

Reduced-basis modeling is a powerful tool for approxi-
mating solutions of parameter-dependent PDEs. In recent
years it has been applied to many types of PDEs allowing
for drastic decreases in computational time. As with all
model-reduction techniques, error quantification is of great
importance. If the error is too large, the model will not be
useful. Error bounds also play a second role in reduced-
basis modeling; they are used in the construction of the
model itself.

Two classical error bounds that can be used in conjunction
with the reduced-basis method for parabolic equations
are the energy-error estimate given by Grepl and Patera
(2005), and the L2-error bound given by Haasdonk and
Ohlberger (2008). Both are mainly for use with coercive
problems. If they are extended for use with noncoercive
problems, they predict exponential growth of the error in
time. In such cases they are of little practical use.

The problem is that these bounds are based on how the
system evolves in a single time step. This is convenient
because it allows us to take complete advantage of the
evolutionary nature of the system but has resulted in very
pessimistic error bounds because the norms that have
been used fail to capture the nature of the dynamics.
An alternative approach is to use bounds based on the
space-time formulation given by Urban and Patera (2014).
That has been shown to be very successful in producing
more accurate error bounds but is associated with greatly
increased computational costs. Such bounds fail to take
advantage of the evolutionary nature of the system and
require the calculation of stability constants for the full
space-time system.

In this article we present new generalizations of the time-
stepping bounds. Our new bounds take full advantage of
the evolutionary nature of the problem making them much
cheaper than space-time bounds. At the same time they

also model the dynamics of the system better so that the
bounds do not grow exponentially. This is achieved using
the Lyapunov stability theory and norms in which the
error is well behaved.

For a large number of noncoercive problems our new
bounds will produce better results than any previous
bounds. They could also be highly useful in simulating
closed-loop systems, which are often noncoercive.

2. PROBLEM SETUP AND ASSUMPTIONS

Most applications of our work will involve the approxima-
tion of PDEs but we will start directly with a semi-discrete
system, which could be a discretization of a PDE. We will
consider the problem of approximating the following sys-
tem for any parameter µ in a bounded, finite-dimensional
domain D ⊂ Rp.

M(µ)ẏ(t) +A(µ)y(t) = B(µ)u(t) (1)

Here we have M(µ) ∈ RN×N , A(µ) ∈ RN×N , B(µ) ∈
RN×m, the inputs u ∈ Rm, and the state y(t) ∈ RN . We
will write ẏ to denote the time derivative of y and choose
a symmetric positive definite (SPD) matrix X ∈ RN×N

that we will use as an inner product. In section 6 we will
assume that M(µ) be symmetric but most of our results
will hold even if it is not.

In order to approximate solutions to (1) numerically we
will use a backwards-Euler time discretization with K time
steps of uniform length τ to get the following system

M(µ)yk + τA(µ)yk = M(µ)yk−1 + τB(µ)uk, (2)

for 1 ≤ k ≤ K which will be referred to as our truth
system. For simplicity we will assume that the initial state
y0 is zero.

As is usual in the reduced-basis context, we will be inter-
ested in approximating y for any µ in a bounded parameter
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domain D. In order to ensure that our method will be
computationally efficient we require that the parameter-
dependence of M , A, and B be of the following form

G(µ) =

QG∑
q=1

Θq
G(µ)G

q, (3)

where G should be replaced by A, M or B respectively.
Here the parameter-independent components Gq will have
the same size as the associated matrix G and the param-
eter maps Θq

G(·) can be arbitrary smooth functions.

In later sections we will often suppress the µ-dependence
of the matrices to save space and simplify the notation.

3. THE REDUCED-BASIS METHOD FOR
PARABOLIC PROBLEMS

Following the work of Grepl and Patera (2005) we will use
a Galerkin projection to reduce the truth model. We start
by introducing a matrix Z ∈ RN×N , where N � N . The
columns of Z will be our N basis elements and should be
orthonormal with respect to X. We will approximate our
truth model with the reduced-basis model

MN (µ)ykN + τAN (µ)ykN = MN (µ)yk−1
N + τBN (µ)uk, (4)

for 1 ≤ k ≤ K, where MN := ZTMZ, AN := ZTAZ,
BN := ZTB, and y0N = 0.

In previous time-stepping methods the coercivity constant

α(µ) := inf
v �=0

vTA(µ)v

vTXv
(5)

played a vital role in both establishing the stability of
reduced-basis approximations and error estimation. The
operator A(µ) is said to be coercive if α(µ) > 0. Grepl
and Patera (2005) assume that both A(µ) and M(µ) are
uniformly coercive and that M(µ) is symmetric for all
µ ∈ D. In that case it is easy to show that (4) is stable both
numerically and in the sense of Lyapunov for all choices
of Z. Our relaxed assumptions do not suffice to guarantee
stability but in section 7 we discuss ways in which stability
can be ensured.

3.1 Building the Reduced Basis

Over the years many methods have been developed to
build the reduced basis, onto which a system will be
projected. In general the most effective method seems to
be the POD-greedy method introduced by Haasdonk and
Ohlberger (2008). The method is based on the greedy
method that was used by Veroy et al. (2003) for stationary
problems. In both cases the key idea is that a search
is performed over a finite subset of D to find parameter
values for which the model produces large error bounds.
The model can then be improved using the truth solution
associated with those parameter values.

In some cases the input u to the system will be parameter
dependent or constant. In that case the input can be
handled directly by the POD-greedy algorithm. If that is
not the case, it may be useful to handle the input using
impulse responses as done by Grepl and Patera (2005).

For our work the traditional methods will in many cases
suffice but this is not guaranteed. Even if the truth system
is stable, the reduced model can have stability issues. Such
issues will be discussed in section 7.

4. LYAPUNOV STABILITY FOR LTI SYSTEMS

We will now introduce Lyapunov stability, which, as we
will show, can be used to take advantage of the structure of
the dynamical system and build cheap and effective error
bounds.

4.1 Continuous-Time Systems

For continuous-time systems we have the following classi-
cal theorem.

Theorem 1. Given a fixed SPD matrix P ∈ RN×N the
function V (v) = vTM(µ)TPM(µ)v is a Lyapunov function
for (1) at the parameter value µ ∈ D, iff the symmetric
matrix

Q(µ) :=
A(µ)TPM(µ) +M(µ)TPA(µ)

2
(6)

is positive definite. In that case the system is asymptoti-
cally stable for µ.

A sufficient condition to show that (1) is asymptotically
stable for a given parameter value µ ∈ D is that the
coercivity constant

αQ(µ) := inf
v �=0

vTQ(µ)v

vTXv
. (7)

be positive. In that case we will say that Q(µ) is coercive.

4.2 Discrete-Time Systems

For the discrete-time system (2) we have the following
theorem.

Theorem 2. Given a fixed SPD matrix P ∈ RN×N the
function VD(v) = vT (M(µ)+τA(µ))TP (M(µ)+τA(µ))v is
a Lyapunov function for (2) at the parameter value µ ∈ D,
iff the symmetric matrix

QD(µ) :=
ATPM +MTPA+ τATPA

2
. (8)

is positive definite. In that case the system is asymptoti-
cally stable for µ.

We note that QD−Q is semi-positive definite. That implies
that any P that proves the stability of (1) also proves
the stability of (2). For QD we introduce the coercivity
constant αQD

, which is defined analogous to αQ.

5. LYAPUNOV-BASED ERROR BOUNDS

In this section we derive generalized versions of the energy
and the L2 error bounds using Lyapunov stability theory.
In both cases the error that we wish to measure will be
given by ek = yk−ZykN . We note that ykN does not need to
be a reduced-basis approximation and could be any lower-
dimensional approximation of yk.
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