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a b s t r a c t 

Regularization and Bayesian methods for system identification have been repopularized in the recent 

years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make 

an attempt to illustrate how the use of regularization in system identification has evolved over the years, 

starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics 

literature. In particular we shall discuss some fundamental issues such as compound estimation problems 

and exchangeability which play and important role in regularization and Bayesian approaches, as also 

illustrated in early publications in Statistics. The historical and foundational issues will be given more 

emphasis (and space), at the expense of the more recent developments which are only briefly discussed. 

The main reason for such a choice is that, while the recent literature is readily available, and surveys 

have already been published on the subject, in the author’s opinion a clear link with past work had not 

been completely clarified. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

About sixty years have passed since the seminal paper by Zadeh 

(1956) , which has coined the name “identification” and triggered 

research of the Automatic Control community in the broad area of 

data based dynamical modeling. 

In the subsequent ten years the field had achieved such an 

importance that IFAC decided to start the series of Symposiums 

on System Identification (formerly Symposium on Identification in 

Automatic Control Systems ) in 1967, two years after the work by 

Åström and Bohlin (1965) which has laid the foundations of Max- 

imum Likelihood methods (and thus Prediction Error Methods in 

the Gaussian case) for ARMAX models. I have had the honor and 

privilege of being a plenary speaker at the 17th Symposium of the 

series in Beijing, and this paper has been written as a companion 

to the plenary presentation, which of course could not enter into 

many of the details that can be found here. 

Despite this long history, the field is still lively and active. We 

believe there are two main reasons why this is so: the first is def- 

initely the increasing importance that data centric methods are 

playing in many areas of Engineering and Applied Sciences with 

new challenges arising from the need to process high dimensional 

data, possibly in real time, and with little (if any) human supervi- 
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sion. A very nice overview of such challenges has been discussed 

by Lennart Ljung in his plenary at the joint IEEE Conference on 

Decision and Control and European Control Conference in 2011 

( Ljung, Hjalmarsson, & Ohlsson, 2011 ) and by Mario Sznaier in his 

SYSID 2012 semi plenary lecture, Sznaier (2012) . 

The second reason, which is the topic of this paper, has to do 

with the revitalization of (old) techniques which are rooted in the 

theory of regularization and Bayesian statistics. 

This paper shall be focused on the role these latter techniques 

play in the recent developments of (linear) system identification, 

with the main objective to guide the reader from the early devel- 

opments to the present days, with a (brief) outlook into the future. 

For reasons of space we will only address linear system identifica- 

tion, even though we believe the methods and tools discussed here 

have high potential in the nonlinear scenario as well (see Johansen, 

1997; Pillonetto, Quang & Chiuso, 2011b; Suykens, 2001 and refer- 

ences therein). We also warn the reader that only the discrete time 

case will be presented. It is worth stressing that most of the recent 

results, just briefly discussed in Section 4 and 7 , can be framed in 

a continuous time scenario (see e.g. Pillonetto & De Nicolao, 2010 ) 

so that also non-uniform sampling can be handled (see e.g. Neve, 

De Nicolao, & Marchesi, 2008 for applications with pharmacoki- 

netic data). 

More specifically, after having introduced the problem and de- 

fined notation in Section 2 , we shall provide in Section 3 an 

overview of parametric Maximum Likelihood/Prediction Error 

Methods (PEM) as formulated in Åström and Bohlin (1965) . We 
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warn the reader that this is not a paper about ML/PEM and thus 

no attempt is made to discuss its developments over the years. The 

main goal of Section 3 will be just to set the notation and to pin- 

point the weaknesses of the parametric approach. Section 4 will 

introduce the regularization approach, with an attempt to provide 

a complete historical overview, including early work in Statistics 

and Econometrics where these type of approaches have been first 

advocated. In order to understand the basic ideas and motivations 

for the Bayesian approach, Section 5 introduces the related prob- 

lem of compound estimation and recalls the notion of exchange- 

ability, as a prerequisite to Section 6 where their role in the system 

identification problem will be discussed. In particular the theory of 

compound estimation provides, from a classical (read frequentist) 

perspective, a sound theoretical motivation for adopting a regular- 

ization/Bayesian point of view. Finally an overview of some recent 

research in which I have been personally involved, regarding the 

design of priors and their use in structure selection problems, will 

be given in Section 7 and 8 , respectively. A brief outlook into the 

future will be provided in Section 9 . 

Of course this overview reflects the author’s view and other 

people would have certainly provided a different one. Despite the 

long list of references I certainly have omitted many relevant ones; 

yet I still hope this paper can provide a starting point for anybody 

interested in digging a bit deeper into the roots of Bayesian Learn- 

ing in System Identification. 

2. Statement of the problem 

Let u (t) ∈ R 

m , y (t) ∈ R 

p be, respectively, the measured input 

and output signals in a dynamical system; the purpose of system 

identification is to find, from a finite collection of input-output 

data { u ( t ), y ( t )} t ∈ [1, N ] , a “good” dynamical model which describes 

the phenomenon under observation. The candidate model will be 

searched for within a so-called “model set” denoted by M . In this 

paper we shall use the symbol M n (θ ) for parametric model classes 

where the subscript n denotes the model complexity, i.e. the num- 

ber of free parameters. 

In this paper we shall be concerned with identification of linear 

models for jointly stationary processes { y (t) , u (t) } t∈ Z , i.e. models 

described by a convolution 

y (t) = 

∞ ∑ 

k =1 

g k u (t − k ) + 

∞ ∑ 

k =0 

h k e (t − k ) t ∈ Z . (1) 

where g and h are the so-called impulse responses of the system 

and { e t } t∈ Z is a zero mean white noise process which under suit- 

able assumptions is the one-step-ahead prediction error; a conve- 

nient description of the linear system (1) is given in terms of the 

transfer functions 

G (q ) := 

∞ ∑ 

k =1 

g k q 
−k H(q ) := 

∞ ∑ 

k =0 

h k q 
−k 

The linear model (1) yields an “optimal” (in the mean square 

sense) output predictor which shall be denoted later on by ˆ y (t| t −
1) . As mentioned above, under suitable assumptions, the noise e ( t ) 

in (1) is the so-called innovation process e (t) = y (t) − ˆ y (t| t − 1) . 

In order to simplify the exposition, in this work we shall only 

deal with feedback free (i.e. assuming that there is no feedback 

from y to u , see Granger, 1963 ) Output Error (OE) systems; thus 

H(q ) = I p will be postulated. All ideas can be extended to handling, 

without major difficulties (see e.g. Pillonetto, Chiuso, & De Nicolao, 

2011a ), more general situation involving colored noise (i.e. H ( q ) � = 

I p ) as well as the case where feedback is present. This however 

would obscure the presentation and is thus omitted. 

Therefore our focus will be on linear models of the form 

y (t) = 

∞ ∑ 

k =1 

g k u (t − k ) + e (t) 

= 

ˆ y (t| t − 1) + e (t) (2) 

where (second order) joint stationarity of { y (t) , u (t) } t∈ Z implies 

that G ( q ) has to be BIBO stable (i.e. analytic outside the open unit 

disc of the complex plane, | q | ≥ 1). In turn BIBO stability requires 

that g k decays to zero as k → ∞ , and therefore the infinite sum- 

mation in (2) can be approximated by a finite summation 

y (t) � 

T ∑ 

k =1 

g k u (t − k ) + e (t) (3) 

for a large enough integer T . Since this is always possible up to 

an arbitrarily small approximation error, 1 in this paper we shall 

always work with FIR models, assuming exact equality is satis- 

fied in (3) . This transforms the infinite dimensional model (2) into 

a finite dimensional one (3) . All the results in this paper could 

indeed be formulated with reference to the infinite dimensional 

model (2) , at the price of bringing so called Reproducing Kernel 

Hilbert Spaces (RKHS) ( Aronszajn, 1950; Saitoh, 1988 ) into the pic- 

ture. In our opinion this only entails additional difficulties for the 

reader and essentially no gain in terms of tools and results and 

will thus be avoided. The interested reader is referred to Pillonetto 

and De Nicolao (2010) , Pillonetto et al. (2011a) and Pillonetto, Din- 

uzzo, Chen, Nicolao, and Ljung (2014) . We would like to remind the 

reader that a detailed study of the asymptotic properties of Bayes 

procedures for infinite dimensional models is delicate and outside 

the scope of this paper, see for instance Knapik, van der Vaart, and 

van Zanten (2011) . 

In the following we shall use the notation Y ∈ R 

pN to denote the 

(column) vector containing the stacked outputs y ( t ), t ∈ [1, N ] and 

ˆ Y (g) the vector of stacked predictors ˆ y (t| t − 1) , t ∈ [1, N ] which is 

a linear function of the impulse response coefficients g k : 

ˆ Y (g) = �g 

where � ∈ R 

pN×pmT is a suitable matrix built with the input data 

u ( t ), while the column vector g ∈ R 

pmT contains the (vectorized) 

impulse response matrix coefficient g k ∈ R 

p×m , k ∈ [1, T ]. 

Performing identification of g (i.e. estimation of the impulse re- 

sponse from a finite set of input output data) can be thus framed 

as estimation of the unknown g in the linear model 

Y = �g + E g ∈ R 

d d := pmT (4) 

Unfortunately the dimension d of the unknown vector g may be 

very large (and possibly much larger that the length of the avail- 

able data Y ) so that the inverse problem of determining g from Y 

in (4) , e.g. minimizing the square loss 

ˆ g LS := arg min 

g 
‖ Y − �g‖ 

2 , (5) 

may be (very) ill conditioned. This may be due to the fact that the 

input process lives in a high dimensional space ( pm large, so that 

many impulse responses need to be estimated) or simply because 

g k decays very slowly to zero and thus many lags need to be in- 

cluded in the parameter vector g . 

To face this problem one has to impose constraints on the 

structure of the vector g . One possibility is to parameterize g k = 

g k (θ ) using a vector θ ∈ R 

n , n << pN . In the remaining part of the 

paper we shall sometimes make explicit the dimension of the pa- 

rameter vector using the notation θn . For instance one may assume 

1 Rigorously one should account for the transient effect, which can be beneficial 

for small data sets where N (and thus implicitly T ) is necessarily small. This can be 

done rather easily estimating the free response for each output channel. Details are 

outside the scope of this paper and shall not be discussed here. 
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