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a b s t r a c t 

Modern air transportation systems are complex cyber-physical networks that are critical to global travel 

and commerce. As the demand for air transport has grown, so have congestion, flight delays, and the 

resultant environmental impacts. With further growth in demand expected, we need new control tech- 

niques, and perhaps even redesign of some parts of the system, in order to prevent cascading delays and 

excessive pollution. 

In this survey, we consider examples of how we can develop control and optimization algorithms for 

air transportation systems that are grounded in real-world data, implement them, and test them in both 

simulations and in field trials. These algorithms help us address several challenges, including resource 

allocation with multiple stakeholders, robustness in the presence of operational uncertainties, and devel- 

oping decision-support tools that account for human operators and their behavior. 

© 2016 Published by Elsevier Ltd on behalf of International Federation of Automatic Control. 

1. Introduction 

The air transportation system operated nearly 85 million flights 

worldwide in 2014, serving 6.7 billion passengers and 102 million 

metric tons of cargo. The Asia-Pacific region served more than a 

third of these passengers, while Europe and North America served 

about a quarter each. Emerging markets in the Middle East are ex- 

periencing an annual growth in traffic of more than 10% annually 

( Airports Council International, 2015 ). Although there are nearly 

42,0 0 0 airports worldwide (nearly 20,0 0 0 airports in the United 

States), traffic demand tends to be concentrated at a small number 

of them: The top 30 airports serve more than one-third of all pas- 

sengers, while the busiest airports (Chicago O’Hare, Atlanta and Los 

Angeles) each see more than 70 0,0 0 0 aircraft operations annually 

( Airports Council International, 2015; Central Intelligence Agency, 

2015 ). 

The increasing demand for air traffic operations has further 

strained this already capacity-limited system, leading to significant 

congestion, flight delays, and pollution. Domestic flight delays in 

the US have been estimated to cost airlines over $19 billion and 

the national economy over $41 billion annually, waste 740 million 

gallons of jet fuel, and release an additional 7.1 billion kilograms 

of CO 2 into the earth’s atmosphere ( Joint Economic Committee, 

US Senate, 2008 ). The demand for airspace resources is expected 

to significantly in the upcoming decades, and to also include 
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operations of autonomous aircraft ( Joint Planning & Develop- 

ment Office, 2004; United States Government Accountability Office, 

2015 ). The networked nature of the air transportation system also 

leads to the propagation of delays from one part of the system to 

another. To prevent cascading delays and even congestive collapse, 

there is a need for new analysis techniques and operational strate- 

gies for air transportation systems. 

The design of algorithms for air transportation, as in the case of 

most real-world infrastructures, yields a range of multi-objective 

optimization problems: For example, one would like to improve 

the efficiency (in terms of reducing total flight delays, fuel burn, 

delays per passenger, etc.), robustness (that is, minimize the prop- 

agation of delays through the system), while still maintaining the 

safety and security of the system. These objectives are difficult to 

achieve in practice, due to the challenges posed by the presence of 

uncertainties, human factors, and competing stakeholder interests. 

However, it is possible to overcome these challenges by leverag- 

ing the increasingly available operational data to build simple yet 

realistic models, and to use these models to develop and imple- 

ment scalable control and optimization algorithms to improve sys- 

tem performance. 

In this paper, we present three examples of how the challenges 

mentioned above can be addressed in the context of air transporta- 

tion systems: 

1. Airport congestion control. 

2. Large-scale optimization algorithms for air traffic flow manage- 

ment. 
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Fig. 1. Average take-off rate as a function of the number of departing aircraft on 

the ground at PHL. The error bars represent the standard deviation of the take-off

rate ( Simaiakis & Balakrishnan, 2010 ). 

3. Learning models of air traffic controller decision processes and 

the associated utility functions. 

This paper is based on a semi-plenary lecture given by the au- 

thor at the American Control Conference, Chicago, IL, 2015. 

2. Airport congestion control 

Taxiing aircraft consume fuel, and emit pollutants such as Car- 

bon Dioxide, Hydrocarbons, Nitrogen Oxides, Sulfur Oxides and 

Particulate Matter that impact the local air quality at airports 

( Ashok, Dedoussi, Yim, Balakrishnan, & Barrett, 2014; Carslaw, 

Beevers, Ropkins, & Bell, 2006; Miracolo et al., 2011; Yu, Cheung, 

Cheung, & Henry, 2004 ). Although fuel burn and emissions are ap- 

proximately proportional to the taxi times of aircraft, other factors 

such as the throttle settings, number of engines that are powered, 

and pilot and airline decisions regarding engine shutdowns dur- 

ing delays also influence them ( Simaiakis & Balakrishnan, 2010 ). 

Domestic flights in the United States emit about 6 million metric 

tonnes of CO 2 , 45,0 0 0 tonnes of CO, 80 0 0 tonnes of NOx, and 40 0 0 

tonnes of HC taxiing out for takeoff; almost half of these emissions 

are at the 20 most congested airports in the country ( Simaiakis, 

Khadilkar, Balakrishnan, Reynolds, & Hansman, 2014 ). Aircraft in 

Europe have been estimated to spend 10–30% of their flight time 

taxiing ( Cros & Frings, 2008 ). Data also show that 20% of delays at 

major US airports occur not due to bad weather, but due to high 

traffic volume ( Federal Aviation Administration (FAA), 2015 ). Better 

congestion management at airports has the potential to mitigate 

these impacts. 

2.1. Impacts of airport congestion 

Pujet et al. analyzed surface congestion by considering the take- 

off rate of an airport as a function of the number of aircraft taxiing 

out ( Pujet, Delcaire, & Feron, 20 0 0 ). Fig. 1 shows a similar analysis 

for Philadelphia International Airport (PHL) in 2007, for one run- 

way configuration (set of active runways at the time), under visual 

meteorological conditions (VMC) ( Simaiakis & Balakrishnan, 2010 ). 

Fig. 1 illustrates that although the take-off rate increases at 

first, it saturates once there are approximately 20 departing air- 

craft on the ground. Any further pushbacks will just lead to con- 

gestion, and will not result in an improvement in the takeoff rate. 

It is also worth noting that for a very high numbers of departures 

on the ground (more than 30 in Fig. 1 ), the departure through- 

put can even decrease due to surface gridlock. Similar phenomena 

have been observed at several major airports in the US, including 

Boston Logan International Airport (BOS), Newark Liberty Interna- 

tional Airport (EWR), New York John F. Kennedy International Air- 

port (JFK), New York La Guardia International Airport (LGA), and 

Charlotte Douglas International Airport (CLT) ( Sandberg, Reynolds, 

Khadilkar, & Balakrishnan, 2013; Simaiakis, 2012; Simaiakis & Bal- 

akrishnan, 2010; 2015 ). This phenomenon of throughput saturation 

is also typical of queuing systems, motivating the development of 

queuing network models of major airports ( Jacquillat, 2012; Sima- 

iakis & Balakrishnan, 2015 ). 

2.2. Congestion management strategies 

One of the earliest effort s at airport congestion control was the 

Departure Planner project ( Feron et al., 1997 ). This project pro- 

posed the concept of a virtual departure queue, where aircraft 

would be held (at their gates) until an appropriately determined 

pushback time. The resultant N-Control strategy was a threshold 

heuristic, where if the total number of departing aircraft on the 

ground exceeded a certain threshold, N ctrl , any further aircraft re- 

questing pushback were held at their gates until the number of de- 

partures on the ground fell below the threshold ( Feron et al., 1997; 

Simaiakis, Khadilkar et al., 2014 ). Other variants and extensions of 

this policy have also been studied ( Burgain, Feron, Clarke, & Dar- 

rasse, 2008; Carr, 2001; Carr, Evans, Feron, & Clarke, 2002; Pujet 

et al., 20 0 0 ). Interestingly, a similar heuristic has been known to be 

deployed by Air Traffic Controllers at BOS during times of extreme 

congestion ( Clewlow & Michalek, 2010 ). The N-Control policy is 

similar in spirit to constant work-in-process or CONWIP policies 

that have been proposed for manufacturing systems ( Spearman & 

Zazanis, 1992 ). 

Several other approaches to departure metering have been pro- 

posed, including the Ground Metering Program at New York’s JFK 

airport ( Nakahara, Reynolds, White, & Dunsky, 2011; Stroiney, Levy, 

Khadilkar, & Balakrishnan, 2013 ), the field-tests of the Collaborative 

Departure Queue Management concept at Memphis (MEM) air- 

port ( Brinton, Provan, Lent, Prevost, & Passmore, 2011 ), the human- 

in-the-loop simulations of the Spot and Runway Departure Ad- 

visor (SARDA) concept at Dallas Fort Worth (DFW) airport ( Jung 

et al., 2011 ), and the trials of the Departure Manager (DMAN) con- 

cept ( Böhme, 2005 ) at Athens International airport (ATH) ( Schaper, 

Tsoukala, Stavrati, & Papadopoulos, 2011 ). In addition, Mixed Inte- 

ger Linear Programming (MILP) formulations of surface traffic op- 

timization have been considered, but are generally known to be 

NP-hard ( Balakrishnan & Jung, 2007; Lee, 2014; Lee & Balakrish- 

nan, 2010; Rathinam, Montoya, & Jung, 2008; Smeltink, Soomer, 

de Waal, & van der Mei, 2005 ). In practice, these strategies are 

treated as open-loop policies that are periodically reoptimized. 

Full-state feedback policies have also been proposed, but have pre- 

sented practical challenges ( Burgain, Pinon, Feron, Clarke, & Mavris, 

2009 ). 

2.3. Design and implementation of a congestion control algorithm 

While there has been prior research on the optimal control of 

queuing systems ( Crabill, Gross, & Magazine, 1977; Stidham & We- 

ber, 1993 ), the application of these techniques to airport operations 

has remained a challenge. In particular, the need to interface with 

current air traffic control procedures, and the different sources of 

uncertainty (the variability in departure throughput and the ran- 

domness of taxi-out times) pose practical concerns. 

2.3.1. Rate control strategies 

On-off or event-driven pushback control policies (such as a 

threshold heuristic) are not desirable in practice, since both air 

Please cite this article as: H. Balakrishnan, Control and optimization algorithms for air transportation systems, Annual Reviews in Control 

(2016), http://dx.doi.org/10.1016/j.arcontrol.2016.04.019 

http://dx.doi.org/10.1016/j.arcontrol.2016.04.019


Download English Version:

https://daneshyari.com/en/article/7107882

Download Persian Version:

https://daneshyari.com/article/7107882

Daneshyari.com

https://daneshyari.com/en/article/7107882
https://daneshyari.com/article/7107882
https://daneshyari.com

