
ARTICLE IN PRESS

JID: JARAP [m5G; May 12, 2016;7:44]

Annual Reviews in Control 0 0 0 (2016) 1–11

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

A discussion of fault-tolerant supervisory control in terms of formal

languages

Thomas Moor

Lehrstuhl für Regelungstechnik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

a r t i c l e i n f o

Article history:

Received 29 October 2015

Revised 20 January 2016

Accepted 4 February 2016

Available online xxx

Keywords:

Discrete-event systems

Supervisory control

Fault-tolerant control

Passive fault-tolerant control

Active fault-tolerant control

Post-fault recovery

Fault-hiding approach

a b s t r a c t

A system is fault tolerant if it remains functional after the occurrence of a fault. Given a plant subject to

a fault, fault-tolerant control requires the controller to form a fault-tolerant closed-loop system. For the

systematic design of a fault-tolerant controller, typical input data consists of the plant dynamics includ-

ing the effect of the faults under consideration and a formal performance requirement with a possible

allowance for degraded performance after the fault. For its obvious practical relevance, the synthesis of

fault-tolerant controllers has received extensive attention in the literature, however, with a particular fo-

cus on continuous-variable systems. The present paper addresses discrete-event systems and provides an

overview on fault-tolerant supervisory control. The discussion is held in terms of formal languages to uni-

formly present approaches to passive fault-tolerance, active fault-tolerance, post-fault recovery and fault

hiding.

© 2016 The Authors. Published by Elsevier Ltd on behalf of International Federation of Automatic

Control.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A fault is considered a sudden change in the behaviour of a

system with potentially undesired consequences. In technical ap-

plications, the overall effect of a single faulty component can range

from degraded performance up to total breakdown, including envi-

ronmental damage or human operator injury. By a fault-tolerant de-

sign one seeks to avoid such negative consequences in a systematic

manner and up to a prescribed degree. Here, a common approach

is to relate the reliability of individual components and the depen-

dencies among different components with the overall functionality

regarding safety and performance; see e.g. Dubrova (2013) for an

introduction to fault-tolerant design from this perspective.

When it comes to control, the system consists of a plant and a

controller where the latter is interpreted as a degree of freedom in

the design of the overall closed-loop behaviour. Assuming that the

plant is subject to a fault, one requires the controller to compen-

sate the fault to some degree in order to maintain an operational

closed loop with a well defined overall performance that complies

to relevant safety requirements. Such a controller is termed fault

tolerant , with fault-tolerant control as a particular approach to fault-

tolerant design. For its obvious practical relevance, fault-tolerant

E-mail address: lrt@fau.de

control has received extensive attention in the literature; see e.g.

Blanke, Kinnaert, Lunze, Staroswiecki, and Schröder (2006) for a

comprehensive study.

Given the nominal plant behaviour in the absence of the fault

and the degraded plant behaviour after the occurrence of the fault,

the literature proposes two alternative strategies to achieve a fault-

tolerant closed-loop system. First, one may design a single con-

troller that can handle both plant models satisfactory. This is re-

ferred to as passive fault-tolerant control and is closely related to ro-

bust control. In contrast to plain robust control, however, attention

needs to be paid to the transient behaviour when the fault occurs.

Moreover, depending on the system classes under consideration,

passive fault-tolerant control may impose unacceptable limitations

on the nominal closed-loop behaviour. As a second strategy, one

may refer to methods related to adaptive control and design one

controller for the nominal plant, one controller for the degraded

plant and a diagnoser to detect the fault. The latter is used to acti-

vate the appropriate controller. This strategy is referred to as active

fault-tolerant control . In contrast to the common setting in adap-

tive control, the particular challenge again is the switching, now

with three modes of operation: (a) no fault, (b) fault has occurred

but is not yet diagnosed, and (c) fault present and diagnosed. In

particular during (b) the degraded plant is under nominal control

and may fail to satisfy even elementary requirements like stability.

http://dx.doi.org/10.1016/j.arcontrol.2016.04.001

1367-5788/© 2016 The Authors. Published by Elsevier Ltd on behalf of International Federation of Automatic Control. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: T. Moor, A discussion of fault-tolerant supervisory control in terms of formal languages, Annual Reviews in

Control (2016), http://dx.doi.org/10.1016/j.arcontrol.2016.04.001

http://dx.doi.org/10.1016/j.arcontrol.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lrt@fau.de
http://dx.doi.org/10.1016/j.arcontrol.2016.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.arcontrol.2016.04.001

2 T. Moor / Annual Reviews in Control 0 0 0 (2016) 1–11

ARTICLE IN PRESS

JID: JARAP [m5G; May 12, 2016;7:44]

A comparative study of active and passive fault-tolerant control is

given by Jiang and Yu (2012) .

As a further variation of active fault-tolerant control, a so-called

reconfiguration block can be used to adapt the nominal controller

to the faulty plant by hiding the effect of the fault. To further il-

lustrate the fault-hiding approach , consider the situation of a sen-

sor failure. Here, one can implement an observer with the recon-

figuration block that, together with the faulty plant, mimics the

nominal plant behaviour. With this approach, the nominal con-

troller remains active even when the fault occurs and, hence, the

closed-loop performance may benefit from advanced tuning strate-

gies used for the nominal case. Virtual sensors and likewise virtual

actuators are discussed by Blanke et al. (2006) , for more general

forms of fault-hiding see Steffen (2005) and Richter (2011) .

The references provided so far focus attention on continuous-

signal plant models represented by ordinary differential equations.

In contrast, the present paper discusses the synthesis of fault-

tolerant control for discrete-event systems that are adequately rep-

resentable by regular languages. As a general framework for the

control of this system class we refer to supervisory control as pro-

posed by Ramadge and Wonham (1987,1989) and demonstrate in

a concise and homogeneous notation how the above strategies for

fault tolerance can be applied.

A preliminary observation for the system class under considera-

tion is that passive fault-tolerant control plays a special role: since

discrete-event systems model sudden changes of behaviour seam-

lessly, any switching scheme introduced to achieve fault-tolerance

can be alternatively interpreted as passive fault-tolerant control.

Moreover, an ordinary event can be used to represent the occur-

rence of the fault. Thus, a fault-accommodating model that sum-

marises the nominal plant behaviour and the degraded plant be-

haviour still belongs to the same system class as the nominal plant

and solutions to the synthesis problem for passive fault-tolerant

control can be obtained by the very same established procedures

known from the nominal synthesis problem. We refer to this per-

spective as naive fault-tolerant control . In general, we expect that

alternative control architectures motivated by additional control

objectives or specific design strategies also comply with the naive

setting.

In this paper, we discuss approaches to the synthesis of fault-

tolerant supervisory control provided by the literature. We make

use of a homogeneous notation in order to demonstrate how the

approaches relate to the naive approach as a common technical

base. Observing applicable constraints and conducting the discus-

sion up to a relevant level of detail, we focus attention to active

fault-tolerant control (Paoli, Sartini, & Lafortune, 2008,2011) and

fault hiding (Wittmann, 2014; Wittmann, Richter, & Moor, 2013)

for specific control architectures, as well as variants of post-fault

recovery (Sülek & Schmidt, 2014; Wen, Kumar, & Huang, 2008a,

2014; Wen, Kumar, Huang, & Liu, 2008b) for additional control ob-

jectives.

To complement the references further discussed in the body of

this paper, we account for related work, that does not fit the lan-

guage based framework. Park and Lim (1998) propose a notion of

fault tolerance in terms of reachability of marked states. The dis-

cussion includes a characterisation of the existence of a fault tol-

erant controller that in addition exhibits a robustness property.

Rohloff (2005) addresses the specific situation of faulty sensors and

proposes to represent the effect of a fault by an according variation

of the projection operator chosen for observations. The cited refer-

ence gives detailed account on modelling and provides a procedure

to test for fault-tolerance, as well as an outline of possible syn-

thesis procedures. Girault and Rutten (2009) adapt methods from

supervisory control for the synthesis of fault-tolerant programs. A

particular focus here is on the systematic generation of models for

certain classes of faults and for certain classes of components sub-

ject to a fault. The cited work uses labelled transitions systems

with guards and actions as a modelling framework. Nke and Lunze

(2011a,2011b) discuss fault-tolerant control for automata with in-

puts and outputs. The contributions include a systematic approach

to model sensor and actuator faults as well as a synthesis proce-

dure for reconfiguration to achieve fault tolerance w.r.t. prescribed

performance objectives. Sülek and Schmidt (2013) consider faults

with the effect that certain events can no longer occur. The dis-

cussion includes a synthesis procedure to achieve fault tolerance

in the closed-loop configuration. Moor and Schmidt (2015) address

fault-tolerance in a hierarchical control architecture and discuss

the option to pass on undesired post-fault behaviour for compen-

sation further up in the hierarchy.

The paper is organised as follows. A language based frame-

work for the control of discrete-event systems is introduced in

Sections 2 and 3 , as a variation of supervisory control under partial

observation originally proposed by Lin and Wonham (1988) and re-

ferring to Ramadge and Wonham (1987) . As a further development

of Wittmann, Richter, and Moor (2012) , Section 4 elaborates the

naive approach to fault-tolerant control to motivate closed-loop re-

quirements relevant for fault tolerance. The subsequent discussion

addresses active fault-tolerant control in Section 5 , post-fault re-

covery in Section 6 and the fault-hiding approach in Section 7 . We

conclude with a summary. The paper is an extended transcript of a

plenary talk held at the 5th International Workshop on Dependable

Control of Discrete-Event Systems (5th IFAC DCDS 2015), Mexico ; see

Moor (2015) for the corresponding conference contribution.

2. Preliminaries and notation

This section provides notation and elementary facts on formal

languages as relevant for the present paper. For a general intro-

duction see Hopcroft and Ullman (1979) , and, for a discrete-event

systems perspective, Cassandras and Lafortune (2008) .

Let � be a finite alphabet , i.e., a finite set of symbols σ ∈ �.

The Kleene-closure �∗ is the set of finite strings s = σ1 σ2 . . . σn , n ∈

N , σi ∈ �, and the empty string ε ∈ �∗, ε �∈ �. The length of a

string s ∈ �∗ is denoted | s | ∈ N 0 , with | ε| = 0 . Given two strings

s = σ1 σ2 . . . σn ∈ �∗ and t = τ1 τ2 . . . τm

∈ �∗, the concatenation is

defined st := σ1 σ2 . . . σn τ1 τ2 . . . τm

∈ �∗ with sε = s = εs . If, for two

strings s, r ∈ �∗, there exists t ∈ �∗ such that s = rt, we say r is a

prefix of s , and write r ≤ s ; if in addition r � = s , we say r is a strict

prefix of s and write r < s . The prefix of s ∈ �∗ with length n ∈ N 0 ,

n ≤ | s |, is denoted pre n s . In particular, pre 0 s = ε and pre | s | s = s .

If, for two strings s, t ∈ �∗, there exists r ∈ �∗ such that s = rt,

we say t is a suffix of s . The suffix of a string s ∈ �∗ obtained

by deleting the prefix of length n, n ≤ | s |, is denoted suf n s ; i.e.,

s = (pre n s)(suf n s) .

A ∗-language (or short a language) over � is a subset L ⊆�∗.

Given a language L ⊆�∗, the equivalence relation [≡L] on �∗ is

defined by s ′ [≡L] s
′ ′ if and only if (∀ t ∈ �∗)[s ′ t ∈ L ↔ s ′ ′ t ∈ L].

The language L is regular if [≡L] has only finitely many equivalence

classes, and, thus is accepted by a finite automaton.

The prefix of a language L ⊆�∗ is defined by pre L := { r ∈

�∗ | ∃ s ∈ L : r ≤ s } . The prefix operator distributes over arbitrary

unions of languages. However, for the intersection of two lan-

guages L and K , we have pre (L ∩ K) ⊆ (pre L) ∩ (pre K) . If equal-

ity holds, L and K are said to be non-conflicting . This is trivially

the case for K ⊆L . The prefix operator is also referred to as the

prefix-closure , and, a language L is prefix-closed (or short closed) if

L = pre L . A language K is relatively prefix-closed w.r.t. L (or short rel-

atively closed w.r.t. L), if K = (pre K) ∩ L . The intersection (pre K) ∩ L

is always relatively closed w.r.t. L . If a language K is relatively

closed w.r.t. a closed language, then K itself is closed.

For two languages L , M ⊆�∗, the concatenation is defined

LM := { st | s ∈ L, t ∈ M} . The concatenation of closed languages is

Please cite this article as: T. Moor, A discussion of fault-tolerant supervisory control in terms of formal languages, Annual Reviews in

Control (2016), http://dx.doi.org/10.1016/j.arcontrol.2016.04.001

http://dx.doi.org/10.1016/j.arcontrol.2016.04.001

Download English Version:

https://daneshyari.com/en/article/7107909

Download Persian Version:

https://daneshyari.com/article/7107909

Daneshyari.com

https://daneshyari.com/en/article/7107909
https://daneshyari.com/article/7107909
https://daneshyari.com

